Monthly research review: February 2020

 

At the end of each month the SoPD writes a post which provides an overview of some of the major pieces of Parkinson’s-related research that were made available during February 2020.

The post is divided into seven parts based on the type of research:

  • Basic biology
  • Disease mechanism
  • Clinical research
  • New clinical trials
  • Clinical trial news
  • Other news
  • Review articles/videos

 


So, what happened during February 2020?

In world news:

February 5th – A research team in Hong Kong announced the development of a droplet-based electricity generator, which will allow electrical energy production with the minimum possible use of water (Click here to read more about this).

February 9th – Storm Ciara battered the UK.

 

February 12th – Researchers discovered a new group of antibiotics that display a unique approach to attacking bacteria, providing a promising new approach in the fight against antimicrobial resistance (Click here to read more about this).

February 24th – Michael Jordon’s tribute to the late Kobe Bryant almost made me cry (almost!). It’s a beautiful speech for a basketball fan.

 

February 26th – Astronomers announced that Earth had acquired a second, slightly smaller moon. Designated 2020 CD3, a calculation of its orbit suggests that it has been orbiting Earth for approximately 3 years. But given that it is the size of a car, don’t expect a second moon landing any time soon (Click here to read more about this).

In the world of Parkinson’s research, a great deal of new research and news was reported:

In February 2020, there were 921research articles added to the Pubmed website with the tag word “Parkinson’s” attached (1803for all of 2020 so far). In addition, there was a wave to news reports regarding various other bits of Parkinson’s research activity (clinical trials, etc).

The top 5 pieces of Parkinson’s news

Continue reading “Monthly research review: February 2020”

The Phase 1/2 CDNF topline results

 

 

 

Neurotrophic factors are naturally occuring proteins that help to keep neurons alive, provide a supportive environment, and encourage growth.

For a long time, researchers have been exploring methods of utilising the power of neurotrophic factors in regenerative strategies for neurodegenerative conditions, like Parkinson’s.

Today, the biotech firm Herantis Pharma announced topline results of their Phase 1/2 clinical trial of the neurotrophic factor Cerebral Dopamine Neurotrophic Factor (or CDNF).

In today’s short post, we discuss what CDNF is, explore what the trial involved, and consider what the

 


Source: Herantis

It is cold this time of year in Helsinki, but there will be some warm smiles there today.

A small biotech firm called Herantis Pharma has announced the topline results of their Phase 1/2 clinical trial exploring the safety and tolerability of a treatment called CDNF.

What is CDNF?

Continue reading “The Phase 1/2 CDNF topline results”

Differentiating PD from MSA

 

There is a lot of clinical and biological similarities between the neurodegenerative conditions of Parkinson’s and multiple systems atrophy (or MSA).

Recently, however, researchers have published a report suggesting that these two conditions may be differentiated from each other using a technique analysing protein in the cerebrospinal fluid – the liquid surrounding the brain, that can be accessed via a lumbar puncture.

Specifically, the method differentiates between different forms of a protein called alpha synuclein, which is associated with both conditions.

In today’s post, we will look at what multiple systems atrophy (MSA) is, discuss how this differentiating technique works, and explore what it could mean for people with either of these conditions.

     


Source: Assessment

Getting a diagnosis of Parkinson’s can be a tricky thing.

For many members of the affected community, it is a long and protracted process.

Firstly, there will be multiple visits with doctors and neurologists (and perhaps some brain imaging) until one is finally given a diagnosis of PD. There are a number of conditions that look very similar to Parkinson’s, which must be ruled out before a definitive diagnosis can be proposed.

But even after being diagnosed, there are a group of conditions that look almost identical to Parkinson’s. And many people will be given a diagnosis of Parkinson’s before they are then given a corrected diagnosis of one of these other conditions.

Can you give me an example of one of these other conditions?

Sure. A good example is multiple systems atrophy.

What is Multiple System Atrophy?

Continue reading “Differentiating PD from MSA”

The Minnesota UDCA study

 

The results of a small clinical study evaluating the safety and tolerability of Ursodeoxycholic acid (or UDCA) in people with Parkinson’s have recently been published.

UDCA is a naturally occurring bile acid that is used in the treatment of gallstones. More recently, however, researchers have reported that this clinically available medication has beneficial effects in models of Parkinson’s.

The clinical study that has recently been published suggests that UDCA is safe and well tolerated in people with Parkinson’s, and warrants further investigation in larger clinical trials.

In today’s post, we will discuss what UDCA is, we will consider some of the previous research in models of Parkinson’s, we will review the results of the clinical trial, and then we will discuss what may happen next.

 


Source: Youtube

How often do you consider your gallbladder?

Excuse me?

Your gallbladder. How often do you think about it?

Uhh,….never?

And I would believe that. It is one of the less appreciated organs. A pear-shaped, hollow organ located just under your liver and on the right side of your body. Its primary function is to store and concentrate your bile. What is bile you ask? Bile is a yellow-brown digestive enzyme – made and released by the liver – which helps with the digestion of fats in your small intestine (the duodenum).

Source: Mayoclinic

One of the down sides of having a gall bladder: gallstones.

Gallstones are hardened deposits that can form in your gallbladder. About 80% of your average gallstone is cholesterol. The remaining 20% of a gallstone is made of calcium salts and bilirubin. Bilirubin is the yellow pigment in bile. When the body produces too much Bilirubin or cholesterol, gallstones can develop.

Gallstones – ouch! Source: Healthline

About 10-20% of the population have gallstones (Source), but the vast majority experience no symptoms and need no treatment.

Interesting intro, but what does any of this have to do with Parkinson’s?

One of the treatments for gallstones is called UDCA. And recently we learned the results of a clinical trial in which UDCA is being “repurposing” as a treatment for Parkinson’s.

What is UDCA?

Continue reading “The Minnesota UDCA study”

That time APOE met Alpha Syn

  

Recently two independent research groups published scientific papers providing evidence that a genetic variation associated with Alzheimer’s may also be affecting the severity of pathology in Parkinson’s.

The genetic variation associated with Alzheimer’s occurs in a gene (a functional region of DNA) called ApoE, and the Parkinson’s pathology involves the clustering of a protein called alpha synuclein.

Specifically, both researchers reported that a genetic variation called ApoE4 is associated with higher levels of alpha synuclein clustering. And ApoE4 is also associated with worse cognitive issues in people carrying it.

In today’s post, we will discuss what ApoE is, what is known about ApoE4, what these new studies found, and what it could mean for the future treatment of Parkinson’s and associated conditions.

 


A mutant. Source: Screenrant

When I say the word ‘mutant’, what do you think of?

Perhaps your imagination drifts towards comic book superheroes or characters in movies who have acquired amazing new super powers resulting from their bodies being zapped with toxic gamma-rays or such like.

Alternatively, maybe you think of certain negative connotation associated with the word ‘mutant’. You might associate the word with terms like ‘weirdo’ or ‘oddity’, and think of the ‘freak show’ performers who used to be put on display at the travelling carnivals.

Circus freak show (photo bombing giraffe). Source: Bretlittlehales

In biology, however, the word ‘mutant’ means something utterly different.

What does ‘mutant’ mean in biology?

Continue reading “That time APOE met Alpha Syn”

The Wim Hof method

 

A regular theme of the SoPD website is the reviewing of novel phamarcological treatments that are being tested on models of Parkinson’s. And while the breadth of the research is exciting and encouraging, the average reader may feel distant to the results of those studies as the experimental drug being tested is still a long way from possible regulatory approval.

There have been numerous requests to explore more readily applicable research, which could be useful for the Parkinson’s community to explore (for example, diet and exercise). This is dangerous ground for a blogger to tread on, but in the interest of stimulating discussion (and possibly research), we shall do our best.

In today’s post, we will discuss what the Wim Hof method is, what research supports it, and potential issues with applying it to conditions like Parkinson’s.

Before we start: This post is not an endorsement of the Wim Hof method, but rather an exploration of the research that has been conducted on it. The author has had no contact with Mr Hof or any associated parties, nor is he aware of any clinical research investigating the Wim Hof method in the context of Parkinson’s. The author is simply fulfilling a request to discuss the topic.

 


Source: PDUK

I am regularly asked to give an opinion (or write a blog post) about a method or technique that is being advertised online as a remedy for all aliments (including Parkinson’s).

What do you think of the ________ method?” folks will ask.

Many of these techniques I am unaware of and I can simply give a polite “I honestly don’t know” kind-of response. But for others, where I do have a little information I find myself rather conflicted.

Why conflicted?

A lot of these online methods/techniques involve commercially-focused entities hidden behind a veneer of testimonials, and very few of them have any actual real science backing them. It is difficult for anyone to give an opinion, let alone write a post about it.

But if people in the Parkinson’s community are experiencing some kind of benefits from a particular method, who am I to say otherwise or pour doubt on their experience given the lack of alternatives (I do draw a line, however, at dodgy stem cell clinics – they are all charlatans).

Source: The conversation

But recently a friend within the PD community asked me to look into the “Wim Hof method”. And while I reluctantly agreed to, I have to say that I was pleasantly surprised

Why surprised?

Because there was actual real research backing up some of the claims! The method has never been clinically tested on Parkinson’s (as far as I’m aware), but researchers have had a look at the method and the results are worth discussing.

What is the Wim Hof method?

Continue reading “The Wim Hof method”

A plutocratic proposal: iCancer

  

Speeding up the clinical development process is a shared goal across many medical conditions (not just Parkinson’s and neurodegeneration), and there are many different approaches to achieving this that are being explored.

Some of these approaches could be considered to be bordering on the unethical, but there are aspects of their structure and design that are still worthy of academic discussion and consideration.

One example is a crowd-funded cancer clinical trial called iCancer.

In today’s post, we will discuss the iCancer project.

 


Source: Entitymag

Over the Christmas period, in addition to spending the required amount of time with family and friends, I fell down a rabbit hole.

Before the festive season, I had been exploring different designs of clinical trials to see what had been given serious academic consideration and thought.

I was particularly intrigued with the ‘pay-to-play’ model (in which patients pay to be part of a study). This model has fallen into disgrace due to abuse by unscrupulous individuals profiting off untested, experimental therapies being targeted towards desperate patients.

To be clear: it is utterly unethical for “for-profit” clinics to be selling access to experimental procedures if there is no proof of efficacy (and this is particularly true for the stem cell clinics).

Source: FDA

But I was interested in exploring if anyone had actually explored this type of clinical study design or aspects of it in the academic sense as a means of speeding things up.

In my role as a research co-ordinator for a Parkinson’s charity, I have been lucky enough to meet and get to know some folks who are absolute fountains of knowledge and wisdom when it comes to all things related to clinical trial design. And I just straight up asked some of these individuals if anyone had ever given serious academic thought to the ‘pay-to-play’ model?

I recieved an interesting collection of answers – all erring on the side of extreme caution, with some taking a “are you %#@&£$ serious” tone – and I suspect that any reputation I might have had with those individuals is now dented (such is the taint of pay-to-play).

But one individual – perhaps in an effort to reorient a foolish, but hungry mind – pointed me towards a possibly better approach.

It is being proposed by a group called iCancer.

What is iCancer?

Continue reading “A plutocratic proposal: iCancer”