Tagged: compounds

The Joy of discovery: On the smell of Parkinson’s

 

Today saw the publication of one of my favourite stories of Parkinson’s research.

It is a tale of courage, serendipity, hard work, and (most importantly) an idea for a research project that came from the Parkinson’s community, but has now opened new doors for researchers and could have important implications for everyone.

In 2012, former nurse Joy Milne was attending a Parkinson’s support group meeting in Edinburgh (Scotland) when she bravely asked the scientist presenting research that day, “Do people with Parkinson’s smell different?

What happened next is likely to become that stuff of legend.

In today’s post, we will discuss the back story, review a new research report investigating the smell of Parkinson’s, and consider what the results could mean for the Parkinson’s community.

 


Erasto Mpemba & Denis Osborne. Source: Rekordata

In 1963, Dr. Denis G. Osborne – from the University College in Dar es Salaam – was invited to give a lecture on physics to the students at Magamba Secondary School (Tanganyika, Tanzania). At the end of his lecture, a 13 year old student, named Erasto Mpemba, stood up and asked Dr Osbrone:

If you take two similar containers with equal volumes of water, one at 35 °C (95 °F) and the other at 100 °C (212 °F), and put them into a freezer, the one that started at 100 °C (212 °F) freezes first. Why?”

The question was met by ridicule from his fellow classmates.

But to his credit, Dr Osborne went back to his lab and conducted some experiments based on the question, confirming Mpemba’s observation. Together they published the results in 1969, and the phenomenon (the process in which hot water can freeze faster than cold water) is now referred to as the Mpemba effect.

Mpemba effect. Source: Wikipedia

The point is: All scientific discoveries start with an observation, followed by an experiment.

And scientists do not have a monopoly on this.

There have been many cases of ‘laypeople’ – like Erasto Mpemba – making important observations. And recently the Parkinson’s world had a perfect example of this. It’s very own Erasto Mpemba moment.

What are you talking about?

Continue reading

QUATS going on?!?

BE WARNED: THIS POST MIGHT UPSET SOME READERS

A recently published research report has caused a bit of a fuss in the media, and I have been contacted by a lot of concerned readers regarding this particular study.

It deals with some chemicals – which can be found in everyday products – that may be having a negative effect on biological processes that are related to Parkinson’s disease – specifically, the normal functioning of the mitochondria (the power stations of each cell).

In today’s post we will discuss the new research, what the chemicals do, and whether the Parkinson’s community should be concerned.


Source: Sacramentodentistry

Toothpaste.

It is something that most of us take completely for granted in the modern world. A product that sits in our bathroom, by the sink or on a shelf, and 2-3 times per day we stick some of it in our mouth and brush it around a bit. Given the well ingrained habit of repetitively ingesting of the stuff, we have little trouble with the idea of switching brands or trying new variations (“Oooh look, this one will make your teeth whiter. Let’s try it”).

I mean, come on – it’s just toothpaste. It’s safe, right?

It probably won’t surprise many of you to learn that the composition of toothpaste has changed quite a bit over the years, but what might amaze you is just how many years are involved with that statement: 

Egyptian toothbrush. Source: Nathanpaarth

The Egyptians recognised the importance of looking after one’s teeth at a very early stage. Apparently they had a lot of trouble with their teeth because their bread had grit in it which wore away their enamel. As far back as 5000BC, they had a form of toothpaste that they used to clean their teeth. It was a mix of powdered ashes of ox hooves, myrrh, powdered and burnt eggshells, and pumice (Source: Wikipedia). The Greeks, followed by the Romans, improved on the recipes (by adding abrasive ingredients such as crushed bones and oyster shells – delightful, huh?), but it wasn’t until after World War I that the modern day pre-mixed toothpastes became popular.

The cavity fighting chemical, Fluoride, was first added to toothpastes in the 1890s, and in 1908 Newell Sill Jenkins (an American dentist) invented the first toothpaste that contained disinfectants. It was called Kolynos (from the Greek words Kolyo nosos (κωλύω νόσος), meaning “disease prevention”). 

Source: Flickr

Following the advent of Kolynos, most toothpaste companies added antiseptic and disinfectant agents to improve the quality and effectiveness of their product. Being offered a tooth cleaning product with magical antibiotic properties seemed to reassure consumers that they were buying something that might actually work. And this led to more and more chemicals being added to toothpaste. Such additions included chemical like triclosan, cetylpyridinium chloride and benzalkonium chloride.

These chemicals are safe though…right?

Continue reading