Tagged: disease

The anti-depressing research of antidepressants

Antidepressants are an important class of drugs in modern medicine, providing people with relief from the crippling effects of depression.

Recently, research has suggested that some of these drugs may also provide benefits to people suffering from Parkinson’s disease. But by saying this we are not talking about the depression that can sometimes be associated with this condition.

This new research suggests anti-depressants are actual providing neuroprotective benefits.

In today’s post we will discuss depression and its treatment, outline the recent research, and look at whether antidepressants could be useful for people with Parkinson’s disease.


Source: NatureWorldNews

It is estimated that 30 to 40% of people with Parkinson’s disease will suffer from some form of depression during the course of the condition, with 17% demonstrating major depression and 22% having minor depression (Click here to read more on this).

This is a very important issue for the Parkinson’s community.

Depression in Parkinson’s disease is associated with a variety of poor outcomes not only for the individuals, but also for their families/carers. These outcomes can include greater disability, less ability to care for oneself, faster disease progression, reduced cognitive performance, reduced adherence to treatment, worsening quality of life, and increased mortality. All of which causes higher levels of caregiver distress for those supporting the affected individual (Click here to read more about the impact of depression in early Parkinson’s).

What is depression?

Wikipedia defines depression as a “state of low mood and aversion to activity that can affect a person’s thoughts, behaviour, feelings, and sense of well-being” (Source). It is a common mental state that causes people to experience loss of interest or pleasure, feelings of guilt or low self-worth, disturbed sleep or appetite, low energy, and poor concentration.

Importantly, depression can vary significantly in severity, from simply causing a sense of melancholy to confining people to their beds.

Source: Prevention

What causes depression?

Continue reading

Advertisements

The TAU of Parkinson’s

Here at the SoPD, we regularly talk about the ‘bad boy’ of Parkinson’s disease – a protein called Alpha Synuclein.

Twenty years ago this year, genetic variations were identified in the alpha synuclein gene that increase one’s risk of developing Parkinson’s. In addition, alpha synuclein protein was found to be present in the Lewy bodies that are found in the brains of people with Parkinson’s. Subsequently, alpha synuclein has been widely considered to be the villain in this neurodegenerative condition and it has received a lot of attention from the Parkinson’s research community.

But it is not the only protein that may be playing a role in Parkinson’s.

Today’s post is all about TAU.


Source: Wallpaperswide

I recently informed my wife that I was thinking of converting to Taoism.

She met this declaration with more of a smile than a look of shock. And I was expecting the latter, as shifting from apatheism to any form of religious belief is a bit of a leap you will appreciate.

When asked to explain myself, I suggested to her that I wanted to explore the mindfulness of what was being proposed by Lao Tzu (the supposed author of the Tao Te Ching – the founding document of Taoism).

This answer also drew a smile from her (no doubt she was thinking that Simon has done a bit of homework to make himself sound like he knows what he was talking about).

But I am genuinely curious about Taoism.

Most religions teach a philosophy and dogma which in effect defines a person. Taoism – which dates from the 4th century BCE – flips this concept on its head. It starts by teaching a single idea: The Tao (or “the way”) is indefinable. And then it follows up by suggesting that each person should discover the Tao on their own terms. Given that most people would prefer more concrete definitions in their own lives, I can appreciate that a lot of folks won’t go in for this approach.

Personally speaking, I quite like the idea that the Tao is the only principle and everything else is a just manifestation of it.

According to Taoism, salvation comes from just one source: Following the Tao.

Source: Wikipedia

Oh and don’t worry, I’m not going to force any more philosophical mumbo jumbo on you – Taoism is just an idea I am exploring as part of a terribly clichéd middle-life crisis I’m working my way through (my wife’s actual response to all of this was “why can’t you just be normal and go buy a motor bike or something?”).

My reason for sharing this, however, is that this introduction provides a convenient segway to what we are actually going to talk about in this post.

You see, some Parkinson’s researchers are thinking that salvation from neurodegenerative conditions like Parkinson’s will come from just one source: Following the TAU.

What is TAU?

Continue reading

James: The man behind the disease (Part 3)

parkinson1

This post is the third in our four part series on the life of Mr James Parkinson, in observance of 200 years since his first description of Parkinson’s disease.

Here we will look at the bulk of James’ adult life – not only his medical related activities, but also all of the ‘other stuff’ (for which he is not remembered). This is not intended to be an exhaustive history of his life, I am simply trying to share a brief overview of what one amazing man achieved with his life.

In addition, I will include some of the global events that were occurring during this time to provide a bit of context not only to the epoch that James lived in, but as to how those events helped to shape who he was.


Franklin's_return_to_Philadelphia_1785_cph.3g09906

The return of Benjamin Franklin to Philadelphia in 1785. Source: Wikimedia

At the end of our first post about James Parkinson, it was 1785 and the recently married James was the sole medical practitioner at “Parkinson and Son”. His first son,  John William Keys Parkinson, was born that year (11th July – for more on James’ family, please click here). AND Perhaps given the weight of these responsibilities, combined with his disappointment regarding his medical training thus far, James sought out further education.

He found it in the form of evening lectures provided by the great Scottish surgeon, John Hunter. Between October 1785 and April 1786, James attended these session and we should all be very grateful that he did.

280px-John_Hunter_by_John_Jackson

John Hunter. Source: Wikipedia

These lectures were conducted in Hunter’s operating theatre in Castle Street, Leicester Square. They were approximately one hour in length, held three times per week and in all there were 68 of them.

And we are very fortunate today that James attended these lectures as we only know of their content because James wrote them down verbatim in shorthand (his notes were later published by his son John William Keys Parkinson – “Hunterian Reminiscences, Being The Substance Of A Course Of Lectures On The Principles And Practice Of Surgery Delivered By John Hunter In The Year 1785″). These notes were invaluable given that Hunter’s own notes were later destroyed by fire.

It was during these lectures that James was introduced to John Hunter’s collection of fossils and another of the great interest of James’ life began. While most people who know of James Parkinson associate him with the field of medicine, his contributions to the fields of geology and paleontology during his life time were far greater than those to medicine.

And truth be known, James is still something of a rockstar to geologists and paleontologists (no pun intended).

Continue reading

CRISPR-Cas9: “New CRISPY Parkinson’s research”

Recently a Parkinson’s-associated research report was published that was the first of many to come.

It involves the use of a genetic screening experiment that incorporates new technology called ‘CRISPR’.

There is an absolute tidal wave of CRISPR-related Parkinson’s disease research coming down the pipe towards us, and it is important that the Parkinson’s community understands how this powerful technology works.

In today’s post we will look at what the CRISPR technology is, how it works, what the new research report actually reported, and discuss how this technology can be used to tackle a condition like Parkinson’s.


Me and my mother (and yes, the image is to scale). Source: Openclipart

My mother: Simon, what is all this new ‘crispy’ research for Parkinson’s I heard about on the news?

Me: Huh? (I was not really paying attention to the question. Terrible to ignore one’s mother I know, but what can I say – I am the black sheep of the family)

My mother: Yes, something about ‘crispy’ and Parkinson’s.

Me: Oh! You mean CRISPR. Yeah, it’s really cool stuff.

My mother: Ok, well, can you explain it all to me please, this ‘Crisper’ stuff?

Me: Absolutely.

CRISPR.101 (or CRISPR for beginners)

In almost every cell of your body, there is a nucleus.

It is the command centre for the cell – issuing orders and receiving information concerning everything going on inside and around the cell. The nucleus is also a storage bank for the genetic blueprint that provides most of the instructions for making a physical copy of you. Those grand plans are kept bundled up in 23 pairs of chromosomes, which are densely coiled strings of a molecule called Deoxyribonucleic acid (or DNA).

DNA’s place inside the cell. Source: Kids.Britannica

Continue reading

Clinical trials: The Power of One

As the age of personalised medicine approaches, innovative researchers are rethinking the way we conduct clinical studies. “Rethinking” in radical ways – think: individualised clinical trials! 

One obvious question is: Can you really conduct a clinical trial involving just one participant?

In this post, we will look at some of the ideas and evaluate the strengths and weaknesses these approaches.


A Nobel prize medal. Source: Motley

In the annals of Nobel prize history, there are a couple winners that stands out for their shear….um, well,…audacity.

One example in particular, was the award given to physician Dr Werner Forssmann. In 1956, Andre Cournand, Dickinson Richards and Forssmann were awarded the Nobel Prize in Physiology or Medicine “for their discoveries concerning heart catheterisation and pathological changes in the circulatory system”. Forssmann was responsible for the first part (heart catheterisation).

Source: Nobelprize

In 1929, at the age of 25, Forssmann performed the first human cardiac catheterisation – that is a procedure that involves inserting a thin, flexible tube directly into the heart via an artery (usually in the arm, leg or neck). It is a very common procedure performed on a daily basis in any hospital today. But in 1929, it was revolutionary. And the audacious aspect of this feat was that Forssmann performed the procedure on himself!

And if you think that is too crazy to be true, please read on.

But be warned: this particular story gets really bonkers.

Continue reading

“Three hellos” for Parkinson’s

Trehalose is a small molecule – nutritionally equivalent to glucose – that helps to prevent protein from aggregating (that is, clustering together in a bad way).

Parkinson’s disease is a neurodegenerative condition that is characterised by protein aggregating, or clustering together in a bad way.

Is anyone else thinking what I’m thinking?

In today’s post we will look at what trelahose is, review some of the research has been done in the context of Parkinson’s disease, and discuss how we should be thinking about assessing this molecule clinically.


Neuropathologists examining a section of brain tissue. Source: Imperial

When a neuropathologist makes an examination of the brain of a person who passed away with Parkinson’s, there are two characteristic hallmarks that they will be looking for in order to provide a definitively postmortem diagnosis of the condition:

1.  The loss of dopamine producing neurons in a region of the brain called the substantia nigra.

d1ea3d21c36935b85043b3b53f2edb1f87ab7fa6

The dark pigmented dopamine neurons in the substantia nigra are reduced in the Parkinson’s disease brain (right). Source:Memorangapp

2.  The clustering (or ‘aggregation’) of a protein called alpha synuclein. Specifically, they will be looking for dense circular aggregates of the protein within cells, which are referred to as Lewy bodies.

A Lewy body inside of a neuron. Source: Neuropathology-web

Alpha-synuclein is actually a very common protein in the brain – it makes up about 1% of the material in neurons (and understand that there are thousands of different proteins in a cell, thus 1% is a huge portion). For some reason, however, in Parkinson’s disease this protein starts to aggregate and ultimately forms into Lewy bodies:

shutterstock_227273575

A cartoon of a neuron, with the Lewy body indicated within the cell body. Source: Alzheimer’s news

In addition to Lewy bodies, the neuropathologist may also see alpha synuclein clustering in other parts of affected cells. For example, aggregated alpha synuclein can be seen in the branches of cells (these clusterings are called ‘Lewy neurites‘ – see the image below where alpha synuclein has been stained brown on a section of brain from a person with Parkinson’s disease.

Lewy_neurites_alpha_synuclein

Examples of Lewy neurites (indicated by arrows). Source: Wikimedia

Given these two distinctive features of the Parkinsonian brain (the loss of dopamine neurons and the aggregation of alpha synuclein), a great deal of research has focused on A.) neuroprotective agents to protect the remaining dopamine-producing neurons in the substantia nigra, and B.) compounds that stop the aggregation of alpha synuclein.

In today’s post, we will look at the research that has been conducted on one particular compounds that appears to stop the aggregation of alpha synuclein.

It is call Trehalose (pronounces ‘tray-hellos’).

Continue reading

Are we getting NURR to the end of Parkinson’s disease?

Nuclear receptor related 1 protein (or NURR1) is a protein that is critical to the development and survival of dopamine neurons – the cells in the brain that are affected in Parkinson’s disease.

Given the importance of this protein for the survival of these cells, a lot of research has been conducted on finding activators of NURR1.

In today’s post we will look at this research, discuss the results, and consider issues with regards to using these activators in Parkinson’s disease.


Comet Hale–Bopp. Source: Physics.smu.edu

Back in 1997, 10 days after Comet Hale–Bopp passed perihelion (April 1, 1997 – no joke; perihelion being the the point in the orbit of a comet when it is nearest to the sun) and just two days before golfer Tiger Woods won his first Masters Tournament, some researchers in Stockholm (Sweden) published the results of a study that would have a major impact on our understanding of how to keep dopamine neurons alive.

Dopamine neurons are one group of cells in the brain that are severely affected by Parkinson’s disease. By the time a person begins to exhibit the movement symptoms of the condition, they will have lost 40-60% of the dopamine neurons in a region called the substantia nigra. In the image below, there are two sections of brain – cut on a horizontal plane through the midbrain at the level of the substantia nigra – one displaying a normal compliment of dopamine neurons and the other from a person who passed away with Parkinson’s demonstrating a reduction in this cell population.

d1ea3d21c36935b85043b3b53f2edb1f87ab7fa6

The dark pigmented dopamine neurons in the substantia nigra are reduced in the Parkinson’s disease brain (right). Source:Memorangapp

The researchers in Sweden had made an amazing discovery – they had identified a single gene that was critical to the survival of dopamine neurons. When they artificially mutated the section of DNA where this gene lives – an action which resulted in no protein for this gene being produced – they generated genetically engineered mice with no dopamine neurons:

Title: Dopamine neuron agenesis in Nurr1-deficient mice
Authors: Zetterström RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T.
Journal: Science. 1997 Apr 11;276(5310):248-50.
PMID: 9092472

The researchers who conducted this study found that the mice with no NURR1 protein exhibited very little movement and did not survive long after birth. And this result was very quickly replicated by other research groups (Click here and here to see examples)

So what was this amazing gene called?

Continue reading

Resveratrol’s neglected siblings

 

We have previously discussed the powerful antioxidant Resveratrol, and reviewed the research suggesting that it could be beneficial in the context of Parkinson’s disease (Click here to read that post).

I have subsequently been asked by several readers to provide a critique of the Parkinson’s-associated research focused on Resveratrol’s twin sister, Pterostilbene (pronounced ‘Terra-still-bean’).

But quite frankly, I can’t.

Why? Because there is NO peer-reviewed scientific research on Pterostilbene in models of Parkinson’s disease.

In today’s post we will look at what Pterostilbene is, what is known about it, and why we should seriously consider doing some research on this compound (and its cousin Piceatannol) in the context of Parkinson’s disease.


Blue berries are the best natural source of Pterostilbene. Source: Pennington

So this is likely to be the shortest post in SoPD history.

Why?

Because there is nothing to talk about.

There is simply no Parkinson’s-related research on the topic of today’s post: Pterostilbene. And that is actually a crying shame, because it is a very interesting compound.

What is Pterostilbene?

Like Resveratrol, Pterostilbene is a stilbenoid.

Stilbenoids are a large class of compounds that share the basic chemical structure of C6-C2-C6:

Resveratrol is a good example of a stilbenoid. Source: Wikipedia

Stilbenoids are phytoalexins (think: plant antibiotics) produced naturally by numerous plants. They are small compounds that become active when the plant is under attack by pathogens, such as bacteria or fungi. Thus, their function is generally considered to part of an anti-microbial/anti-bacterial plant defence system for plants.

The most well-known stilbenoid is resveratrol which grabbed the attention of the research community in a 1997 study when it was found to inhibit tumour growth in particular animal models of cancer:

Continue reading

PACAP and a snail model of Parkinson’s

We are going to talk about a snail model of Parkinson’s disease. I kid you not.

Love them or hate them, recent research on snails is helping us to better understand a potential therapeutic target for Parkinson’s disease, called Pituitary adenylate cyclase-activating polypeptide (or PACAP).

In today’s post we will look at what PACAP is, outline the new snail research, and discuss what they mean for people living with Parkinson’s disease.


Snail2

The humble snail. Source: Warrenphotographic

In a recent post, I talked about a class of drugs called Dipeptidyl peptidase-4 (or DPP-4) inhibitors (Click here to read that post). DPP-4 is a ubiquitous enzyme (it is present on most cells in your body) that breaks down certain proteins.

In that post, I listed some of the proteins that DPP-4 targets – they include:

  • Gastrin-releasing peptide (GRP)
  • Glucagon
  • Glucagon-like peptide-1 (GLP-1)
  • Glucagon-like peptide-2 (GLP-2)
  • Granulocyte-macrophage colony-stimulating factor (GM-CSF)
  • GHRH and IGF-1
  • High-mobility group box 1 (HMGB1)
  • Macrophage-derived chemokine (MDC)
  • Macrophage inflammatory protein-1 α (MIP-1 α), chemokine (C-C motif) ligand 3-like 1 (CCL3L1), or LD78β
  • Pituitary adenylate cyclase-activating polypeptide (PACAP)
  • Neuropeptide Y (NPY)
  • Regulated on activation, normal T cell expressed and secreted (Rantes)
  • Stromal cell-derived factor-1 (SDF-1)
  • Substance P (SP)

Lots of interesting proteins with regards to Parkinson’s disease on this list, including GLP-1 which has been turned in the drug Exenatide (which has demonstrated positive effects in recent clinical trials for Parkinson’s disease – click here and here to read more about this). Another interesting protein on the list is ‘Granulocyte-macrophage colony-stimulating factor‘ (GM-CSF) which we have also discussed in a previous post (Click here to read that post). A synthetic version of GM-CSF (called Sargramostim) has recently been tested in a clinical trial of Parkinson’s disease in Nebraska, and the results of that Phase I trial have been very encouraging.

By treating people with DPP-4 inhibitors (also known as ‘gliptins’), one would be blocking the breaking down of these potentially beneficial proteins – increasing the general amount of GLP-1 and GMCSF that is floating around in the body.


EDITOR’S NOTE: DPP-4 inhibitors have not yet been clinically tested in Parkinson’s disease, and thus we have no idea if they are safe in people with this condition. They are being mentioned here purely as part of an academic discussion.


One protein on the list of DPP-4 targets above that we have not yet discussed is Pituitary adenylate cyclase-activating polypeptide (or PACAP).

And today we are going to have a look at it.

Why?

Continue reading

A clever new Trk for Rasagiline

The protein Alpha Synuclein has long been considered the bad-boy of Parkinson’s disease research. Possibly one of the main villains in the whole scheme of things. 

New research suggests that it may be interfering with a neuroprotective pathway, leaving the affected cell more vulnerable to stress/toxins. But that same research has highlighted a novel beneficial feature of an old class of drugs: MAO-B inhibitors.

In today’s post we will outline the new research, discuss the results, and look at whether this new Trk warrants a re-think of MAO-B inhibitors.


The great Harry Houdini. Source: Wikipedia

I’m not sure about you, but I enjoy a good magic trick.

That exhilarating moment when you are left wondering just one thing: How do they do that?

(Seriously, at 4:40 a baguette comes out of thin air – how did he do that?)

Widely believed to have been one of the greatest magicians of all time (Source), Harry Houdini is still to this day revered among those who practise the ‘dark arts’.

Born Erik Weisz in Budapest (in 1874), Houdini arrived in the US in 1878. Fascinated with magic, in 1894, he launched his career as a professional magician and drew attention for his daring feats of escape. He renamed himself “Harry Houdini” – the first name being derived from his childhood nickname, “Ehrie,” and the last name paying homage to the great French magician Jean Eugène Robert-Houdin. In 1899, Houdini’s act caught the eye of Martin Beck, an entertainment manager, and from there the rest is history. Constantly upping the ante, his feats became bolder and more death defying.

And the crowds loved him.

From stage, he moved on to film – ultimately starting his own production company, Houdini Picture Corporation. In addition, he was a passionate debunker of psychics and mediums, his training in magic helping him to expose frauds (which turned him against his former friend Sir Arthur Conan Doyle, who believed deeply in spiritualism).

This is all very interesting, but what does any of it have to do with Parkinson’s?

Continue reading