Tagged: skin cancer

The Melanoma drug from MODAG

Melanoma

A build up of a protein called alpha synuclein inside neurons is one of the characteristic feature of the Parkinsonian brain. This protein is believed to be partly responsible for the loss of dopamine neurons in this condition.

A similar build up of alpha synuclein is also seen in the deadly skin cancer, Melanoma… but those cells don’t die (?!?)… in fact, they just keep on dividing.

Why is there this critical difference?

In today’s post we look at an interesting new study that may have solved this mystery.


o-melanoma-facebook

A melanoma. Source: Huffington Post

Parkinson’s disease has a very strange relationship with the skin cancer melanoma.

As we have stated in previous posts (Click here, herehere and here to read those posts) people with Parkinson’s disease are 2-8 times more likely to develop melanoma than people without Parkinson’s (And this finding has been replicated a few times: Olsen et al, 2005; Olsen et al, 2006; Driver et al 2007; Gao et al 2009; Lo et al 2010; Bertoni et al 2010;Schwid et al 2010; Ferreira et al, 2010Inzelberg et al, 2011; Liu et al 2011; Kareus et al 2012; Wirdefeldt et al 2014; Catalá-López et al 2014; Constantinescu et al 2014; Ong et al 2014).

The truly baffling detail in this story, however, is that this relationship is reciprocal – if you have melanoma you are almost 3 times more likely to develop Parkinson’s disease than someone without melanoma (Source: Baade et al 2007; Gao et al 2009).

What is melanoma exactly?

Melanoma is a type of skin cancer.

It develops from the pigment-containing cells known as melanocytes. Melanocytes are melanin-producing cells located in the bottom layer (the stratum basale) of the skin’s outer layer (or epidermis).

Blausen_0632_Melanocyte

The location of melanocytes in the skin. Source: Wikipedia

Melanocytes produce melanin, which is a pigment found in the skin, eyes, and hair. It is also found in the brain in certain types of cells, such as dopamine neurons (where it is referred to as neuromelanin).

subnigmicro

Neuromelanin (brown) in dopamine neurons. Source: Schatz

Melanomas are usually caused by DNA damage resulting from exposure to ultraviolet radiation. Ultraviolet radiation from tanning beds increases the risk of melanoma (Source), as does excessive air travel (Source), or simply spending to much time sun bathing.

Approximately 2.2% of men and women will be diagnosed with melanoma at some point during their lives (Source). In women, melanomas most commonly occur on the legs, while in men they are most common on the back. Melanoma makes up 5% of all cancers (Source).

Generally, melanomas is one of the safer cancers, as it can usually be detected early by visual inspection. This cancer is made dangerous, however, by its ability to metastasise (or spread to other organs in the body).

melanoma-progression

The stages of melanoma. Source: Pathophys

Are there any genetic associations between Parkinson’s disease and melanoma?

No.

When the common genetics mutations that increase the risk of both conditions were previously analysed, it was apparent that none of the known Parkinson’s mutations make someone more susceptible to melanoma, and likewise none of the melanoma-associated genetic mutations make a person vulnerable to Parkinson’s disease (Meng et al 2012;Dong et al 2014; Elincx-Benizri et al 2014).

In fact, researchers have only found very weak genetic connections between two conditions (Click here to read our previous post on this). It’s a real mystery.

Are there any other connections between Parkinson’s disease and melanoma?

Yes.

Another shared feature of both Parkinson’s disease and melanoma is the build up of a protein called alpha synuclein. Alpha synuclein is believed to be one of the villains in Parkinson’s disease – building up inside a cell, becoming toxic, and eventually killing that cell.

But recently researchers noticed that melanoma also has a build up of alpha synuclein, but those cells don’t die:

Melan2

Title: Parkinson’s disease-related protein, alpha-synuclein, in malignant melanoma
Authors: Matsuo Y, Kamitani T.
Journal: PLoS One. 2010 May 5;5(5):e10481.
PMID: 20463956               (This article is OPEN ACCESS if you would like to read it)

In this study, researchers from Japan found that alpha synuclein was detected in 86% of the primary and 85% of the metastatic melanoma. Understand that the protein is not detectable in the non-melanoma cancer cells.

So what is it doing in melanoma cells?

Recently, researchers from Germany believe that they have found the answer to this question:

Melanoma

Title: Treatment with diphenyl-pyrazole compound anle138b/c reveals that α-synuclein protects melanoma cells from autophagic cell death
Authors: Turriani E, Lázaro DF, Ryazanov S, Leonov A, Giese A, Schön M, Schön MP, Griesinger C, Outeiro TF, Arndt-Jovin DJ, Becker D
Journal: Proc Natl Acad Sci U S A. 2017 Jun 5. pii: 201700200. doi: 10.1073/pnas.1700200114
PMID: 28584093

In their study, the German researchers looked at levels of alpha synuclein in melanoma cells. They took the melanoma cells that produced the most alpha synuclein and treated those cells with a chemical that inhibits the toxic form of alpha synuclein (which results from the accumulation of the protein).

What they observed next was fascinating: the cell morphology (or physically) changed, leading to massive melanoma cell death. The investigators found that this cell death was caused by instability of mitochondria and a major dysfunction in the autophagy process.

Mitochondria, you may recall, are the power house of each cell. They keep the lights on. Without them, the lights go out and the cell dies.

Mitochondria

Mitochondria and their location in the cell. Source: NCBI

Autophagy is the garbage disposal/recycling process within each cell, which is an absolutely essential function. Without autophagy, old proteins and mitochondria will pile up making the cell sick and eventually it dies. Through the process of autophagy, the cell can break down the old protein, clearing the way for fresh new proteins to do their job.

Print

The process of autophagy. Source: Wormbook

Waste material inside a cell is collected in membranes that form sacs (called vesicles). These vesicles then bind to another sac (called a lysosome) which contains enzymes that will breakdown and degrade the waste material. The degraded waste material can then be recycled or disposed of by spitting it out of the cell.

What the German research have found is that the high levels of alpha synuclein keep the mitochondria stable and the autophagy process working at a level that helps to keeps the cancer cell alive.

Next, they replicated this cell culture research in mice with melanoma tumors. When the mice were treated with the chemical that inhibits the toxic form of alpha synuclein, the cancer cancer became malformed and the autophagy process was blocked.

The researchers concluded that “alpha synuclein, which in PD exerts severe toxic functions, promotes and thereby is highly beneficial to the survival of melanoma in its advanced stages”.

So what does all of this mean for Parkinson’s disease?

Well, this is where the story gets really interesting.

You may be pleased to know that the chemical (called Anle138b) which was used to inhibit the toxic form of alpha synuclein in the melanoma cells, also works in models of Parkinson’s disease:

Wagner

Title: Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease.
Authors: Wagner J, Ryazanov S, Leonov A, Levin J, Shi S, Schmidt F, Prix C, Pan-Montojo F, Bertsch U, Mitteregger-Kretzschmar G, Geissen M, Eiden M, Leidel F, Hirschberger T, Deeg AA, Krauth JJ, Zinth W, Tavan P, Pilger J, Zweckstetter M, Frank T, Bähr M, Weishaupt JH, Uhr M, Urlaub H, Teichmann U, Samwer M, Bötzel K, Groschup M, Kretzschmar H, Griesinger C, Giese A.
Journal: Acta Neuropathol. 2013 Jun;125(6):795-813
PMID: 23604588              (This article is OPEN ACCESS if you would like to read it)

In this first study the researchers discovered Anle138b by conducted a large screening study to identify for molecules that could inhibit the toxic form of alpha synuclein.

They next tested Anle138b in both cell culture and rodent models of Parkinson’s disease and found it to be neuroprotective and very good at inhibiting the toxic form of alpha synuclein. And the treatment looks to be very effective. In the image below you can see dark staining of toxic alpha synuclein in the left panel from the brain of an untreated mouse, but very little staining in the right panel from an Anle138b treated mouse.

NL_2014_01_modag

 

Toxic form of alpha synuclein (dark staining). Source: Max-Planck

Importantly, Anle138b does not interfere with normal behaviour of alpha synuclein in the mice (such as production of the protein, correct functioning, and eventual degradation/disposal of the protein), but it does act as an inhibitor of alpha synuclein clustering or aggregation (the toxic form of the protein). In addition, the investigators found no toxic effects of Anle138b in any of their experiments even after long-term high-dose treatment (more than one year).

And in a follow up study, the drug was effective even if it was given after the disease model had started:

Olig2

Title: The oligomer modulator anle138b inhibits disease progression in a Parkinson mouse model even with treatment started after disease onset
Authors: Levin J, Schmidt F, Boehm C, Prix C, Bötzel K, Ryazanov S, Leonov A, Griesinger C, Giese A.
Journal: Acta Neuropathol. 2014 May;127(5):779-80.
PMID: 24615514                (This article is OPEN ACCESS if you would like to read it)

During the first study, the researchers had started Anle138b treatment in the mouse model of Parkinson’s disease at a very young age. In this study, however, the investigators began treatment only as the symptoms were starting to show, and Anle138b was found to significantly improve the overall survival of the mice.

One particularly interesting aspect of Anle138b function in the brain is that it does not appear to change the level of the autophagy suggesting that the biological effects of treatment with Anle138b is cell-type–specific (Click here to read more about this). In cancer cells, it is having a different effect to that in brain cells. These differences in effect may also relate to disease conditions though, as Anle138b was not neuroprotective in a mouse model of Multiple System Atrophy (MSA; Click here to read more about this).

Is Anle138b being tested in the clinic?

Not yet.

Ludwig-Maximilians-Universität München and the Max Planck Institute for Biophysical Chemistry (Göttingen) have spun off a company called MODAG GmbH that is looking to advance Anle138b to the clinic (Click here for the press release). The Michael J Fox Foundation are helping to fund more preclinical development of this treatment (Click here to read more about this).

We will be watching their progress with interest.

What does it all mean?

Summing up: There are many mysteries surrounding Parkinson’s disease, but some researchers from Germany may have just solved one of them and at the same time developed a potentially useful new treatment.

They have discovered that the Parkinson’s associated protein, alpha synuclein, which is produced in large amounts in the skin cancer melanoma, is actually playing an important role in keeping those cancer cells alive. By finding a molecule that can block the build up of alpha synuclein, they have not only found a treatment for melanoma, but also potentially one for Parkinson’s disease.

And given that both diseases are closely associated, this could be seen as a great step forward. Two birds with one stone as the saying goes.


The banner for today’s post was sourced from Wikipedia

The red headed mice of Boston

redhair

Recently scientists have found a possible link in the curious relationship of red hair, melanoma and Parkinson’s disease.

It involves red headed mice (not a typo – you read that correctly).

In today’s post we will discuss the new research and explain what it means for Parkinson’s disease.


ginger

Red or ginger hair. Source: theLocal

We have previously discussed the curious association between red hair and Parkinson’s disease (Click here for that post).

We have also previously discussed the curious association between melanoma and Parkinson’s disease (Click here for that post).

Melanoma

Melanoma. Source: Wikipedia

Basically, people with red hair are more vulnerable to Parkinson’s disease that dark haired people, and people with a history of melanoma (skin cancer) are more likely to develop Parkinson’s disease than people with no history.

And given that people with red hair are generally more vulnerable to melanoma that dark haired people, you can understand why scientists have recently been very interested in this curious triangle of seemingly unrelated biological features.

Recently, however, scientists in Boston (USA) have provided evidence that the genetic mutation which causes red hair and increases the risk of melanoma, might also make the brain more vulnerable to Parkinson’s disease.

Red hair is caused by a genetic mutation?

Before we answer this question: the word ‘mutation’ carries a negative connotation thanks to it’s use in popular media and films. In biology, researchers prefer to use the word genetic ‘variation’. And EVERYONE has variations. They are what makes each of us unique. A father will pass on many of his own genetic variations to his son, but there will also be 50-100 spontaneous variations. And this is how, red hair can sometimes pop up in a family with little history of it.

Ok, so red hair is caused by a genetic variation?

Yes.

Red hair, which occurs naturally in 1–2% of the general population (though there are some regional/geographical variation), results from one of several genetic variations. Approximately 80% of people with red hair have a variation in a gene called melanocortin-1 receptor (or MC1R). Another gene associated with red hair is called HCL2 – ‘Hair colour 2’.

So what did the researchers find?

red

Title: The melanoma-linked “redhead” MC1R influences dopaminergic neuron survival.
Authors: Chen X, Chen H, Cai W, Maguire M, Ya B, Zuo F, Logan R, Li H, Robinson K, Vanderburg CR, Yu Y, Wang Y, Fisher DE, Schwarzschild MA.
Journal: Ann Neurol. 2016 Dec 26. doi: 10.1002/ana.24852. [Epub ahead of print]
PMID: 28019657

In their study, the researchers have investigated mice that carry a mutation of the MC1R gene (thus inactivating the gene – and yes, these mice have red/ginger fur!). They noticed that the mice displayed a progressive decline in their locomotor activity, moving around significantly less than non-red furred control mice at 8 months of age. The MC1R mutant mice also displayed a reduction in the number of dopamine producing neurons in the brain, when compared to the non-red furred controls (dopamine a chemical in the brain that helps to regulate movement).

The MC1R mutant mice were more vulnerable to toxin induced models of Parkinson’s disease (both 6OHDA and MPTP), but (most interestingly) when the researchers used a substance that binds to MC1R and initiates a response (an MC1R agonist called BMS-470539) they found that this treatment improved the survival of the dopamine producing cells in the brain.

The researchers are now seeking to further understand how the loss of MC1R renders the dopamine cells more vulnerable, and follow up the finding that MC1R agonists are neuroprotective.

Has there ever been any other evidence to suggest that MC1R is neuroprotective?

No. To our knowledge this is the first evidence that targeting MC1R could be a novel therapeutic strategy in a brain related condition (there has been some evidence of MC1R activation having beneficial effects in other parts of the body – click here for more on this).

And there are some indications as to how this positive effect could be working:

nurr1-2
Title: Melanocortin-1 receptor signaling markedly induces the expression of the NR4A nuclear receptor subgroup in melanocytic cells.
Authors: Smith AG, Luk N, Newton RA, Roberts DW, Sturm RA, Muscat GE.
Journal: J Biol Chem. 2008 May 2;283(18):12564-70.
PMID: 18292087

In this study, the researchers found that activating MC1R increases the levels of a protein called NR4A2 (or Nurr1). Nurr1 is a protein involved in the development and maintenance of dopamine producing neurons, and numerous recent studies have suggested that it is neuroprotective for these cells as well (Click here to read more on this).

So what does it all mean?

For some time there has been a curious link between people with red hair, melanoma and Parkinson’s disease. Now researchers in Boston have provided new evidence that the link exists, but they have also highlighted a new pathway via which novel therapies for Parkinson’s disease might be researched and developed.  Not a bad day at the office.


The banner for today’s post was sourced from Fancy mice

An update on the connection between Melanoma and Parkinson’s disease

We have previously discussed the strange connection between Melanoma and Parkinson’s disease (click here to read that post).

Melanoma

That post included the curious observations that:

  • People with Parkinson’s disease are 2-8 times more likely to develop melanoma than people without Parkinson’s.
  • People with melanoma are almost 3 times more likely to develop Parkinson’s disease than someone without melanoma.

And we have no idea why (there is no shared genetic predisposition for the two conditions).

Research published this week, however, may begin to explain part of the connection:

Melanoma-title

Title: Parkinson disease (PARK) genes are somatically mutated in cutaneous melanoma.
Authors: Inzelberg R, Samuels Y, Azizi E, Qutob N, Inzelberg L, Domany E, Schechtman E, Friedman E.
Journal: Neurol Genet. 2016 Apr 13;2(3):e70.
PMID: 27123489     (This research article is OPEN ACCESS if you would like to read it)

In this study, the scientists looked at somatic mutations in cells from 246 tissue samples of melanoma.

What are somatic mutations?

Somatic mutations are genetic alteration that have been acquired by a cell that can then be passed to the progeny of that mutated cell (via cell division). These somatic mutations are different from ‘germline’ mutations, which are inherited genetic alterations that are present in the sperm and egg that were used in making each of us.

germlinesomatic1

Somatic vs Germline mutations. Source: AutismScienceFoundation

In the 246 samples analysed, the researchers found 315,914 somatic mutations in 18,758 genes. Yes, that is a lot, but what was very interesting was their discovery of somatic mutations in many of the PARK genes.

What are PARK genes?

There are a number (approx. 20) genes that are now recognised as conferring vulnerability to developing Parkinson’s disease. These genes are referred to as PARK genes. They include the gene that makes the protein Alpha synuclein ( SNCA ) and many others with interesting names (like PINK1 and LRRK2). Approximately 15% of cases of Parkinson’s are believed to occur because of a mutation in one (or more) of the  PARK genes. As a result there is a lot of research being conducted on the PARK genes.

Were all of PARK genes mutated in the Melanoma samples?

Somatic mutation in 14 of the 15 PARK genes (that the researchers analysed) were present in the melanoma samples. This means that after the skin cells turned into melanoma cancer cells, they acquired mutations in some of the PARK genes. Overall, 48% of the analysed samples had a mutation in at least 1 PARK gene, and 25% had mutations in multiple PARK genes (2–8 mutated genes). One PARK gene in particular, PARK 8, was more significantly present in the melanoma cells than the others. PARK8 is also known as Leucine-rich repeat kinase 2 or LRRK2 (we have previously discussed Lrrk2 – click here to read that post). Three additional PARK genes (PARK2, PARK18, and PARK20) were also significantly present, but not as significant as Lrrk2.

So what does it all mean?

The researchers speculate in the discussion of their report about what the findings could mean, but it is interesting to note that many of the PARK genes are susceptible to acquiring mutations (particularly  Lrrk2). And this is important to consider when thinking about our development as individual human beings – even though you may not born with a particular mutation for Parkinson’s disease (you haven’t inherited it from our parents), somewhere along the developmental pathway (from egg fusing with sperm to full grown adult) you could acquire some of these mutations which would make you vulnerable to Parkinson’s disease.And here we should note that skin and brain share the same developmental source (called the ectoderm). A mutation in a PARK gene could occur during your development and you would never know.

We thought this was a very interesting study – certainly worthy of reporting here.