Breathtaking research

# # # #

Breathing is one of those many aspects of life that we all take completely for granted for the vast majority of our time on planet Earth.

It represents not only a magnificent means of providing our bodies with oxygen, but also disposing of waste.

Recently researchers have attempted to see if there are any components in the waste part of our exhaled breath that could be useful in terms of diagnosing, stratifying and monitoring Parkinson’s.

In today’s post, we will discuss what breath is made up of, what this new research found, and explore what the potential implications of the findings are.

# # # #

Source: Wired

Breath is the finest gift of nature. Be grateful for this wonderful gift.
― Amit Ray

On any given day, the average person takes 17,000 breaths (the normal rate for an adult at rest is 12 to 20 breaths per minute).

When we breath in, the inhaled air – made up of approximately 16% oxygen, 4% carbon dioxide, and 79% nitrogen – is taken down to a pair of organs we know of as the lungs. Most of us have two lungs, but they are not exactly alike. The lung on the left side of your body is divided into two lobes, while the lung on your right side is divided into three. And the left lung is also slightly smaller, making room for your heart.

Combined, your lungs contain approximately 2,400 kilometres (1,500 miles) of airways and 300 to 500 million air sacs (called alveoli – Source). Through the thin walls of the alveoli, oxygen from the inhaled air passes into your blood in the surrounding capillaries. At the same time that this is occurring, carbon dioxide moves from your blood and out into the air sacs.

When you breathe out (exhale), your diaphragm and rib muscles relax, reducing the space in your chest. As the chest cavity gets smaller, your deflating lungs push the carbon dioxide-rich air up your windpipe and then out of your nose or mouth.

Exhaled air consists of 78% nitrogen, 16% oxygen, and 4% carbon dioxide. In addition to this, there are also trace amounts of “other stuff”.

And it’s that “other stuff”, where our post starts today.

Ok, I’ll bite: What do you mean by “other stuff”?

Continue reading “Breathtaking research”

The Joy of discovery: On the smell of Parkinson’s


Today saw the publication of one of my favourite stories of Parkinson’s research.

It is a tale of courage, serendipity, hard work, and (most importantly) an idea for a research project that came from the Parkinson’s community, but has now opened new doors for researchers and could have important implications for everyone.

In 2012, former nurse Joy Milne was attending a Parkinson’s support group meeting in Edinburgh (Scotland) when she bravely asked the scientist presenting research that day, “Do people with Parkinson’s smell different?

What happened next is likely to become that stuff of legend.

In today’s post, we will discuss the back story, review a new research report investigating the smell of Parkinson’s, and consider what the results could mean for the Parkinson’s community.


Erasto Mpemba & Denis Osborne. Source: Rekordata

In 1963, Dr. Denis G. Osborne – from the University College in Dar es Salaam – was invited to give a lecture on physics to the students at Magamba Secondary School (Tanganyika, Tanzania). At the end of his lecture, a 13 year old student, named Erasto Mpemba, stood up and asked Dr Osbrone:

If you take two similar containers with equal volumes of water, one at 35 °C (95 °F) and the other at 100 °C (212 °F), and put them into a freezer, the one that started at 100 °C (212 °F) freezes first. Why?”

The question was met by ridicule from his fellow classmates.

But to his credit, Dr Osborne went back to his lab and conducted some experiments based on the question, confirming Mpemba’s observation. Together they published the results in 1969, and the phenomenon (the process in which hot water can freeze faster than cold water) is now referred to as the Mpemba effect.

Mpemba effect. Source: Wikipedia

The point is: All scientific discoveries start with an observation, followed by an experiment.

And scientists do not have a monopoly on this.

There have been many cases of ‘laypeople’ – like Erasto Mpemba – making important observations. And recently the Parkinson’s world had a perfect example of this. It’s very own Erasto Mpemba moment.

What are you talking about?

Continue reading “The Joy of discovery: On the smell of Parkinson’s”