Tagged: cure

Resveratrol’s neglected siblings

 

We have previously discussed the powerful antioxidant Resveratrol, and reviewed the research suggesting that it could be beneficial in the context of Parkinson’s disease (Click here to read that post).

I have subsequently been asked by several readers to provide a critique of the Parkinson’s-associated research focused on Resveratrol’s twin sister, Pterostilbene (pronounced ‘Terra-still-bean’).

But quite frankly, I can’t.

Why? Because there is NO peer-reviewed scientific research on Pterostilbene in models of Parkinson’s disease.

In today’s post we will look at what Pterostilbene is, what is known about it, and why we should seriously consider doing some research on this compound (and its cousin Piceatannol) in the context of Parkinson’s disease.


Blue berries are the best natural source of Pterostilbene. Source: Pennington

So this is likely to be the shortest post in SoPD history.

Why?

Because there is nothing to talk about.

There is simply no Parkinson’s-related research on the topic of today’s post: Pterostilbene. And that is actually a crying shame, because it is a very interesting compound.

What is Pterostilbene?

Like Resveratrol, Pterostilbene is a stilbenoid.

Stilbenoids are a large class of compounds that share the basic chemical structure of C6-C2-C6:

Resveratrol is a good example of a stilbenoid. Source: Wikipedia

Stilbenoids are phytoalexins (think: plant antibiotics) produced naturally by numerous plants. They are small compounds that become active when the plant is under attack by pathogens, such as bacteria or fungi. Thus, their function is generally considered to part of an anti-microbial/anti-bacterial plant defence system for plants.

The most well-known stilbenoid is resveratrol which grabbed the attention of the research community in a 1997 study when it was found to inhibit tumour growth in particular animal models of cancer:

Continue reading

Advertisements

Plan B: Itchy velvet beans – Mucuna pruriens

Mucuna-Pruriens-Mood-and-Hormone-Velvet-Bean

The motor features of Parkinson’s disease can be managed with treatments that replace the chemical dopamine in the brain. 

While there are many medically approved dopamine replacement drugs available for people affected by Parkinson’s disease, there also are more natural sources.

In today’s post we will look at the science and discuss the research supporting one of the most potent natural source for dopamine replacement treatment: Mucuna pruriens


Plan.B-oneway

Source: Yourtimeladies

When asked by colleagues and friends what is my ‘plan B’ (that is, if the career in academia does not play out – which is highly probable I might add – Click here to read more about the disastrous state of biomedical research careers), I answer that I have often considered throwing it all in and setting up a not-for-profit, non-governmental organisation to grow plantations of a tropical legume in strategic places around the world, which would provide the third-world with a cheap source of levodopa – the main treatment in the fight against Parkinson’s disease.

Mucuna_pruriens_08

Plan B: A legume plantation. Source: Tropicalforages

The response to my answer is generally one of silent wonder – that is: me silently wondering if they think I’m crazy, and them silently wondering what on earth I’m talking about.

As romantic as the concept sounds, there is an element of truth to my Plan B idea.

I have read many news stories and journal articles about the lack of treatment options for those people with Parkinson’s disease living in the developing world.

South-Africa-hospital

Hospital facilities in the rural Africa. Source: ParkinsonsLife

Some of the research articles on this topic provide a terribly stark image of the contrast between people suffering from Parkinson’s disease in the developing world versus the modernised world. A fantastic example of this research is the work being done by the dedicated researchers at the Parkinson Institute in Milan (Italy), who have been conducting the “Parkinson’s disease in Africa collaboration project”.

5x1000.banner-5x1000-2017-medicigk-is-331

The researchers at the Parkinson Institute in Milan. Source: Parkinson Institute 

The project is an assessment of the socio-demographic, epidemiological, clinical features and genetic causes of Parkinson’s disease in people attending the neurology out-patients clinic of the Korle Bu Teaching and Comboni hospitals. Their work has resulted in several really interesting research reports, such as this one:

Ghana
Title: The modern pre-levodopa era of Parkinson’s disease: insights into motor complications from sub-Saharan Africa.
Authors: Cilia R, Akpalu A, Sarfo FS, Cham M, Amboni M, Cereda E, Fabbri M, Adjei P, Akassi J, Bonetti A, Pezzoli G.
Journal: Brain. 2014 Oct;137(Pt 10):2731-42.
PMID: 25034897          (This article is OPEN ACCESS if you would like to read it)

In this study, the researchers collected data in Ghana between December 2008 and November 2012, and each subject was followed-up for at least 6 months after the initiation of Levodopa therapy. In total, 91 Ghanaians were diagnosed with Parkinson’s disease (58 males, average age at onset 60 ± 11 years), and they were compared to 2282 Italian people with Parkinson’s disease who were recruited during the same period. In long-term follow up, 32 Ghanaians with Parkinson’s disease were assessed (with an average follow period of 2.6 years).

There are some interesting details in the results of the study, such as:

  • Although Levodopa therapy was generally delayed – due to availability and affordability – in Ghana (average disease duration before Levodopa treatment was 4.2 years in Ghana versus just 2.4 years in Italy), the actual disease duration – as determined by the occurrence of motor fluctuations and the onset of dyskinesias – was similar in the two populations.

Ghana2

Source: PMC

  • The motor fluctuations were similar in the two populations, with a slightly lower risk of dyskinesias in Ghanaians.
  • Levodopa daily doses were higher in Italians, but this difference was no longer significant after adjusting for body weight.
  • Ghanaian Parkinson’s sufferers who developed dyskinesias were younger at onset than those who did not.

Reading these sorts of research reports, I am often left baffled by the modern business world’s approach to medicine. I am also left wondering how an individual’s experience of Parkinson’s disease in some of these developing nations would be improved if a cheap alternative to the dopamine replacement therapies was available.

Are any cheap alternatives available?

Continue reading

On the hunt: Parkure

Lysimachos-zografos-naturejobs-blog

This is Lysimachos.

Pronounced: “Leasing ma horse (without the R)” – his words not mine.

He is one of the founders of an Edinburgh-based biotech company called “Parkure“.

In today’s post, we’ll have a look at what the company is doing and what it could mean for Parkinson’s disease.


parkure7

Source: Parkure

The first thing I asked Dr Lysimachos Zografos when we met was: “Are you crazy?”

Understand that I did not mean the question in a negative or offensive manner. I asked it in the same way people ask if Elon Musk is crazy for starting a company with the goal of ‘colonising Mars’.

In 2014, Lysimachos left a nice job in academic research to start a small biotech firm that would use flies to screen for drugs that could be used to treat Parkinson’s disease. An interesting idea, right? But a rather incredible undertaking when you consider the enormous resources of the competition: big pharmaceutical companies. No matter which way you look at this, it has the makings of a real David versus Goliath story.

But also understand this: when I asked him that question, there was a strong element of jealousy in my voice.

Logo_without_strapline_WP

Incorporated in October 2014, this University of Edinburgh spin-out company has already had an interesting story. Here at the SoPD, we have been following their activities with interest for some time, and decided to write this post to make readers aware of them.

Continue reading

Editorial: Putting 200 years into context

200

Here at the SoPD we understand and are deeply sympathetic to the frustration felt by the Parkinson’s community regarding the idea of ‘200 years and still no cure’.

As research scientists, we are in the trench everyday – fighting the good fight – trying to find ways of alleviating this terrible condition. And some of us are also in the clinics, interacting with sufferers and their families, listening to their stories and trying to help. While we do not deal directly with the day-to-day trials of living with Parkinson’s disease, we are keenly aware of many of the issues and are fully invested in trying to correct this condition.

972px-Paralysis_agitans_(1907,_after_St._Leger)

Source: Wikipedia

We do feel, however, that it is important to put some context into that ‘200 years’ time point that we are observing this week. It is too easy for people to think “wow, 200 years and still no cure?”

In our previous post – made in collaboration with Prof Frank Church of the Journey with Parkinson’s blog – we listed the major historical milestones and discoveries made in the Parkinson’s disease field during the last 200 years.

The most striking feature of that time line, however, is how just little actually happened during the first 100 years.

In fact for most of that period, Parkinson’s disease wasn’t even called ‘Parkinson’s disease’.

Of the 48 events that we covered on that time line, 37 of them have occurred in the last 50 years (26 since 2000).

Taking this line of thought one step further, 2017 is also the 20 year anniversary of the discovery of alpha synuclein‘s association with Parkinson’s disease. And what a remarkable 20 years that has been. In 1997, a group of researcher at the National institute of Health led by Robert Nussbaum reported the first genetic mutation in the alpha synuclein gene that infers vulnerability to Parkinson’s disease.

Since then, we have:

  • identified multiple additional mutations within that same gene that increase the risk of developing Parkinson’s disease.
  • determined which forms of alpha synuclein are toxic.
  • identified alpha synuclein as an important component of Lewy bodies – the dense clusters of protein found in the Parkinsonian brain.
  • discovered numerous methods by which alpha synuclein can be passed between cells – potentially aiding in the spread of Parkinson’s disease.
  • developed and validated models of Parkinson’s disease based on manipulations of alpha synuclein (including numerous genetically engineered mice, viral over-expression models, etc).
  • identified alpha synuclein in the lining of the gut of people with Parkinson’s disease and this has aided us in developing new theories as to how the condition may start.
  • set up and run numerous clinical trials targeting alpha synuclein (and we eagerly await the results of those trials).
  • published over 6200 scientific papers (don’t believe me? Click here) – that’s over 300 publications per year!

PBB_Protein_SNCA_image

Alpha synuclein protein. Source: Wikipedia

And the truly amazing part? All of these particular achievements are only dealing with just the one gene: alpha synuclein.

Since the identification of the alpha synuclein mutations, we have subsequently discovered genetic mutations in over 20 other genes that increase the risk of developing Parkinson’s disease. And we have conducted the same activities/experiments for most of those genes as we have for alpha synuclein.

For example, in 2004 we discovered that people with genetic mutations in a gene called glucocerebrosidase (or GBA) had an increased risk of developing Parkinson’s disease. In 2016, just 12 years after that discovery we have started a clinical trial designed specifically for those people (Click here for more on this).

wwwnew2_0

Source: Parkinson’s UK

We here at the SoPD are fully supportive of campaigns like #WeWontWait, and this post was not written (nor meant to be taken) as an excuse response to the ‘200 years and no cure’ frustration. I can understand how it may be read that way, but I did not know how else to write it. And I thought it needed to be written.

The point of this entire post is that those 200 years need to be put into context.

And while all of these words aren’t going to make life easier for someone living with Parkinson’s to deal with their situation, in addition to raising awareness this week I think it is important for the Parkinson’s community to also understand just how far we have come, and how fast we are currently progressing.

The question can be asked: will this be the last major anniversary we acknowledge with regards to Parkinson’s disease?

I sincerely think that there is cause to hope that it is.


 

Let me finish with a personal note:

I have a good friend – let’s call him Matt.

As a young boy, Matt remembers his grandfather having Parkinson’s disease. He remembers growing up watching the trials and tribulations that the old man went through with the condition. There were basically no treatment options when Matt’s grandfather was diagnosed and little in the way of support for the family. His grandfather’s body simply froze up as the disease progressed. L-dopa probably only became available to Matt’s grandfather during the latter stages of the disease.

Four years ago Matt’s father was diagnosed with Parkinson’s disease.

Thanks to scientific advances, however, Matt’s dad now has a wide range of treatment options on the medication side of things. The disease can be managed so that he can still play his golf and enjoy his retirement – in a way that his own father never could. He also has numerous surgical options once those medications lose their effectiveness (eg. deep brain stimulation, Pallidotomy, etc). The chances are very likely that Matt’s father will pass on by natural causes before he requires many of those additional options.

This is the progress that we have made.

But there is still a lot of work to be done of course.

During a lunch shortly after his father’s diagnosis, Matt looked squarely across the table at me. Me, the Parkinson’s researcher. All of the usual jovial nature was missing from his face and he simply muttered the words ‘hurry up’.

Whether he was speaking for his father, himself or his own young kids, I understood where his words were coming from and the sentiment.

And, as this post and the previous post point out, we are hurrying up.


The banner for today’s post was sourced from BMO