Tagged: near-infrared

“So, will my head glow in a disco?”

 

The clustering (or aggregation) of misfolded proteins is a key feature of many neurodegenerative conditions. These aggregating proteins are collectively referred to as ‘amyloid’ proteins, and the way that they have misfolded allows many copies of these proteins to stick together.

Amyloid proteins are associated with more than 50 medical conditions (from Alzheimer’s, ALS, Huntinton’s and Parkinson’s through to rheumatoid arthritis and diabetes).

In addition to being public enemy no. 1 for their respective conditions, amyloid proteins also share another curious feature:

They glow when exposed to specific wavelengths of light (like near-infrared).

In today’s post, we will look at what we mean by ‘amyloid proteins’, what this new research found, and how this property could be extremely useful in the tracking of Parkinson’s over time.

 


Source: Yoursalesplaybook

If you have recently sent me an email, you may not have had a response. I apologise profusely for this, but I have gradually become inundated with questions and requests, and have had a hard time keeping up (in addition: family and day job take priority).

I do get some wonderfully titled emails though, which immediately grab the attention.

For example, the other day I recieved an email entitled:

“So, will my head glow in a disco?”

A brief glance at the contents confirmed suspicions that the sender was referring to this new research report:

Title: Ultraviolet–visible–near-infrared optical properties of amyloid fibrils shed light on amyloidogenesis
Authors: Pansieri J, Josserand V, Lee S-J, Rongier A, Imbert D, Sallanon MM, Kövari E, Dane TG, Vendrely C, Chaix-Pluchery O, Guidetti M, Vollaire J, Fertin A, Usson Y, Rannou P, Coll J-L, Marquette C, & Forge V
Journal: Nature Photonics, published 13th May 2019
PMID: N/A

Previously researchers have described an intrinsic ultraviolet–visible optical property to amyloid proteins.

What does that mean?

Continue reading