Tagged: glucose

Diabetes and Parkinson’s

A reader recently asked for an explanation of some recent research regarding diabetes and Parkinson’s.

You see, a significant proportion of the Parkinson’s community have glucose intolerance issues and some live with the added burden of diabetes. That said, the vast majority of diabetics do not develop PD. Likewise, the vast majority of people with Parkinson’s do not have a diagnosis of diabetes.

There does appear to be a curious relationship between Parkinson’s and diabetes, with some recent research suggests that this association can be detrimental to the course of the condition. 

In today’s post we will look at what what diabetes is, consider the associations with Parkinson’s, and we will discuss the new research findings.


Foreman and Ali. Source: Voanews

1974 was an amazing year.

On October 30th, the much-hyped heavyweight title match – the ‘Rumble in the Jungle’ – between George Foreman and Muhammad Ali took place in Kinshasa, Zaire (Democratic Republic of the Congo).

Stephen King. Source: VanityFair

A 26-year-old author named Stephen King published his debut novel, “Carrie” (April 5, with a first print-run of just 30,000 copies).

Lucy. Source: Youtube

The fossil remains of a 3.2 million years old hominid skeleton was discovered in Ethiopia (November 24th). It was named ‘Lucy’ – after the song “Lucy in the Sky with Diamonds” by The Beatles which was played repeatedly in the expedition camp the evening after the team’s first day of work on the site (Source).

And Richard Nixon becomes the first US president to resign from office (August 9th).

President Richard Nixon. Source: Fee

In addition to all of this, in December of 1974, a small study was published in the Journal of Chronic Diseases.

It dealt with Parkinson’s and it presented a rather startling set of findings:

Continue reading

Advertisements

Reduce your RAGE as you AGE

An Advanced Glycation Endproduct (or AGE) is a protein or lipid that has become glycated.

Glycation is a haphazard process that impairs the normal functioning of molecules. It occurs as a result of exposure to high amounts of sugar. These AGEs are present at above average levels in people with diabetes and various ageing-related disorders, including neurodegenerative conditionsAGEs have been shown to trigger signalling pathways within cells that are associated with both oxidative stress and inflammation, but also cell death.

RAGE (or receptor of AGEs) is a molecule in a cell membrane that becomes activated when it interacts with various AGEs. And this interaction mediates AGE-associated toxicity issues. Recently researchers found that that neurons carrying the Parkinson’s associated LRRK2 G2019S genetic variant are more sensitive to AGEs than neurons without the genetic variant. 

In today’s post we will look at what AGE and RAGE are, review the new LRRK2 research, and discuss how blocking RAGE could represent a future therapeutic approach for treating Parkinson’s.


The wonder of ageing. Source: Club-cleo

NOTE: Be warned, the reading of this post may get a bit confusing. We are going to be discussing ageing (as in the body getting old) as well as AGEing (the haphazard process processing of glycation). For better clarification, lower caps ‘age’ will refer to getting old, while capitalised ‘AGE’ will deal with that glycation process. I hope this helps.


Ageing means different things to different people.

For some people ageing means more years to add to your life and less activity. For others it means more medication and less hair. More wrinkles and less independence; more arthritis and less dignity; More candles, and less respect from that unruly younger generation; More… what’s that word I’m thinking of? (forgetfulness)… and what were we actually talking about?

Wisdom is supposed to come with age, but as the comedian/entertainer George Carlin once said “Age is a hell of a price to pay for wisdom”. I have to say though, that if I had ever met Mr Carlin, I would have suggested to him that I’m feeling rather ripped off!

George Carlin. Source: Thethornycroftdiatribe

Whether we like it or not, from the moment you are born, ageing is an inevitable part of our life. But this has not stopped some adventurous scientific souls from trying to understand the process, and even try to alter it in an attempt to help humans live longer.

Regardless of whether you agree with the idea of humans living longer than their specified use-by-date, some of this ageing-related research could have tremendous benefits for neurodegenerative conditions, like Parkinson’s.

What do we know about the biology of ageing?

Continue reading

“Three hellos” for Parkinson’s

Trehalose is a small molecule – nutritionally equivalent to glucose – that helps to prevent protein from aggregating (that is, clustering together in a bad way).

Parkinson’s disease is a neurodegenerative condition that is characterised by protein aggregating, or clustering together in a bad way.

Is anyone else thinking what I’m thinking?

In today’s post we will look at what trelahose is, review some of the research has been done in the context of Parkinson’s disease, and discuss how we should be thinking about assessing this molecule clinically.


Neuropathologists examining a section of brain tissue. Source: Imperial

When a neuropathologist makes an examination of the brain of a person who passed away with Parkinson’s, there are two characteristic hallmarks that they will be looking for in order to provide a definitively postmortem diagnosis of the condition:

1.  The loss of dopamine producing neurons in a region of the brain called the substantia nigra.

d1ea3d21c36935b85043b3b53f2edb1f87ab7fa6

The dark pigmented dopamine neurons in the substantia nigra are reduced in the Parkinson’s disease brain (right). Source:Memorangapp

2.  The clustering (or ‘aggregation’) of a protein called alpha synuclein. Specifically, they will be looking for dense circular aggregates of the protein within cells, which are referred to as Lewy bodies.

A Lewy body inside of a neuron. Source: Neuropathology-web

Alpha-synuclein is actually a very common protein in the brain – it makes up about 1% of the material in neurons (and understand that there are thousands of different proteins in a cell, thus 1% is a huge portion). For some reason, however, in Parkinson’s disease this protein starts to aggregate and ultimately forms into Lewy bodies:

shutterstock_227273575

A cartoon of a neuron, with the Lewy body indicated within the cell body. Source: Alzheimer’s news

In addition to Lewy bodies, the neuropathologist may also see alpha synuclein clustering in other parts of affected cells. For example, aggregated alpha synuclein can be seen in the branches of cells (these clusterings are called ‘Lewy neurites‘ – see the image below where alpha synuclein has been stained brown on a section of brain from a person with Parkinson’s disease.

Lewy_neurites_alpha_synuclein

Examples of Lewy neurites (indicated by arrows). Source: Wikimedia

Given these two distinctive features of the Parkinsonian brain (the loss of dopamine neurons and the aggregation of alpha synuclein), a great deal of research has focused on A.) neuroprotective agents to protect the remaining dopamine-producing neurons in the substantia nigra, and B.) compounds that stop the aggregation of alpha synuclein.

In today’s post, we will look at the research that has been conducted on one particular compounds that appears to stop the aggregation of alpha synuclein.

It is call Trehalose (pronounces ‘tray-hellos’).

Continue reading