When Inflazome becomes Roche

# # # #

Over the past two decades, pharmaceutical companies have shifted from maintaining large in-house drug development platforms to a model that involves acquiring small biotech firms with interesting agents once those companies reach a certain point in their maturation.

This week a biotech firm called Inflazome was bought by the big pharma Roche.

Inflazome has been developing a novel NLRP3 inhibitor, which targets inflammasome activation and the company has had Parkinson’s in it’s sights as far as indications of interest.

In today’s post, we will discuss what the inflammasome is, how NLRP3 inhibitors work, and what will be happening next.

# # # #


Source: Science

One of the hottest areas of Parkinson’s research world is ‘inflammation‘ (cheesy pun intended).

What is inflammation?

When cells in your body are stressed or sick, they begin to release tiny messenger proteins which inform the rest of your body that something is wrong.

When enough of these messenger proteins are released that the immune system becomes activated, it can cause inflammation.

Inflammation is a critical part of the immune system’s response to trouble. It is the body’s way of communicating to the immune system that something is wrong and activating it so that it can help deal with the situation.

By releasing the messenger proteins (called cytokines), injured/sick cells kick off a process that results in multiple types of immune cells entering the troubled area of the body and undertaking very specific tasks.

The inflammatory process. Source: Trainingcor

The strength of the immune response depends on the volume of the signal arising from those released messenger proteins. And there are processes that can amplify the immune response.

One of those processes is called inflammasomes.

What are inflammasomes?

Continue reading “When Inflazome becomes Roche”

Dexamethasone for Parkinsons? Not so elementary my dear Watson

# # # #

Artificial intelligence (AI) is being applied by scientists to all aspects of Parkinson’s research. From drug discovery to protein folding, the power of these supercomputers is being utilized and it is starting to bear interesting pieces of fruit.

Recently a group of scientists in Toronto (Canada) have reported a study using AI to identify clinically available drugs that may reduce the risk of developing Parkinson’s (or slow it onset).

Specifically, using IBM’s Watson super computer, they screened through a medical records database (the Ontario Drug Benefit), and identified several classes of drugs that reduced the risk of developing PD.

In today’s post, we will review the results of the recent report and consider the implications.

# # # #


Dexamethasone. Source: Sky

This week we received fantastic news from the coordinators of the UK RECOVERY Trial that they have identified an agent that appears to have a significant impact on improving survival for individuals affected by COVID19 infections.

The RECOVERY (Randomised Evaluation of COVid-19 thERapY) trial – launched across 175 NHS hospitals in the UK in March – is one of the world’s largest randomized, controlled trials for coronavirus treatments (Click here to read more about this details of the trial). The study currently has more than 11,000 patients enrolled and it is evaluating 6 agents for their ability to combat the COVID-19 virus, SARS-CoV-2.

This week the researchers conducting the study announced that the corticosteroid dexamethasone – a medicine that reduces inflammation by mimicking anti-inflammatory hormones produced by the body – was able to reduced the risk of dying in infected individuals (on receiving oxygen therapy but were not on ventilators) by 20%. The agent had no effect on people with less severe cases of COVID-19.

Source: Bloomberg

It is a remarkable achievement – involving 2,100 patients who received the drug at a low-to-moderate dose of 6 milligrams per day for 10 days and were compared against approximately 4,000 patients who received standard care for the coronavirus infection (UPDATE 22/6/2020: a manuscript of the result is now avaiable – click here to read it).

Yeah, it’s brilliant. But what does this have to do with Parkinson’s?

Well, very recently dexamethasone has been identified as potentially having an effect on another medical condition.

Care to take a wild guess as to which condition that might be?

Continue reading “Dexamethasone for Parkinsons? Not so elementary my dear Watson”

The inflammasome field is heating up

 

When a cell is sick or damaged it will send out signals alerting the immune system that something is wrong. If enough of these molecules are released, they will initate an “immune response” and this process is called inflammation.

There is evidence in neurodegenerative conditions (like Parkinson’s and Alzheimer’s) that the inflammation process is involved, and inhibitors of particular aspects of inflammation are being developed as potential therapies for these conditions.

Of particular interest are drugs targeting the NLRP3 inflammasome.

In today’s post, we will discuss what the NLRP3 inflammasome is, look at new research identifying a novel NLRP3 inflammasome inhibitor, and provide an overview/update of where things are in the clinical testing of NLRP3 inflammasome inhibitors for Parkinson’s.

 


Source: Science

One of the hottest areas of Parkinson’s research world is ‘inflammation’ (cheesy pun intended).

What is inflammation?

When cells in your body are stressed or sick, they begin to release tiny messenger proteins which inform the rest of your body that something is wrong.

When enough of these messenger proteins are released that the immune system becomes activated, it can cause inflammation.

Inflammation is a critical part of the immune system’s response to trouble. It is the body’s way of communicating to the immune system that something is wrong and activating it so that it can help deal with the situation.

By releasing the messenger proteins (called cytokines), injured/sick cells kick off a process that results in multiple types of immune cells entering the troubled area of the body and undertaking very specific tasks.

The inflammatory process. Source: Trainingcor

The strength of the immune response depends on the volume of the signal arising from those released messenger proteins. And there are processes that can amplify the immune response.

One of those processes is called inflammasomes.

What are inflammasomes?

Continue reading “The inflammasome field is heating up”

A re-think of PINK

 

The immune system is our main line of defense against a world full of potentially dangerous disease causing agents. It is a complicated beast that does a fantastic job of keeping us safe and well.

Recently, however, there was an interesting study suggesting that a genetic risk factor for Parkinson’s may be associated with an over-reaction from the immune system in response to infection from a common human food poisoning bug.

Specifically, mice who were missing the gene PINK1 literally had an ‘autoimmune reaction’ to the infection – that is the immune system began attacking healthy cells of the body – while normal mice (with intact PINK1 genes) recovered from the infection and went about their business.

In today’s post, we will explore this new research and discuss why we may need to rethink PINK.

 


Source: Huffington Post

I have had a guts full of all this gut research being published about Parkinson’s.

[NOTE 1.: For the unitiated: A “guts full” – Adjective, Kiwi colloquialism. Meaning ‘Had enough of’, ‘fed up of’, ‘endured to the point of tolerance’]

[NOTE 2.: The author of this blog is a Kiwi]

I really can’t stomach anymore of it.

And my gut feeling suggests that there is only more to come. It would be nice though, to have something else… something different to digest.

So what is today’s post all about?

Gut research of course.

But this gut research has a REALLY interesting twist.

Continue reading “A re-think of PINK”