Tagged: Parkin

Lipid issues in ER = ZZZ issues in PD

New research provides some interesting insight into particular cellular functions – and possibly sleep issues – associated with Parkinson’s.

Researchers in Belgium have recently published interesting findings that a genetic model of Parkinson’s exhibits sleep issues, which are not caused by neurodegeneration, but rather neuronal dysfunction. And as a result, they were able to treat it… in flies at least.

In today’s post, we will review this new research and consider its implications.


Source: Dlanham

I am a night owl.

One that is extremely reluctant to give up each day to sleep. There is always something else that can be done before going to bed. And I can often be found pottering around at 1 or 2am on a week night.

As a result of this foolish attitude, I am probably one of the many who live in a state of sleep deprivation.

I am a little bit nervous about doing the spoon test:

But I do understand that sleep is very important for our general level of health and well being. And as a researcher on the topic, I know that sleep complications can be a problem for people with Parkinson’s.

What sleep issues are there for people with Parkinson’s?

Continue reading

Blessed are the suppressed

Recently a study was published in which the researchers had used a large dataset from the the United States Medicare system. The dataset held medical prescriptions for beneficiaries aged 60–90 years.

In their analysis, the researchers found that several diagnoses commonly treated with immunosuppressant medications were inversely associated with Parkinson’s – suggesting that perhaps the immunosuppressants may be reducing the risk of developing PD.

When they looked closer at the immunosuppressants, the investigators found that of the six categories of immunosuppressants, two were clearly associated with a lower risk of PD.

In today’s post, we will discuss what immunosuppression means, we will review the data, and  we will consider some of the issues associated with immunosuppressants.


George Hitchings and Gertrude Elion. Source: Achievement

After her grandfather died of stomach cancer and her fiance died of inflammation of the heart, Gertrude Elion dedicated herself to a future in medical research.

But despite a passionate love for laboratory research and having an excellent academic record, she was unable to get a graduate fellowship (or even an assistantship) due to the gender discrimination that existed at the time.

In the late 1930s, she enrolled in secretarial school with the goal of saving enough money to continue her education and achieve her goal.

After a year and a half of temporary secretarial and teaching positions, having saved up enough money, Elion enrolled as Master’s student in chemistry at New York University. She worked part-time as a receptionist and later as a substitute teacher to pay for her expenses. And she spent nights and weekends in the laboratory doing her research. She completed her degree in 1941.

George & Gertrude in action. Source: Wikimedia

In 1944, Gertrude was hired by George Hitchings who was working at what is now the pharmaceutical company GlaxsoSmithKline. It was the beginning of an amazing collaboration! And even though she never achieved a PhD, the work that she and Hitchings did together – research that won them the 1988 Nobel Prize in Physiology or Medicine – not only changed the way we design new drugs, but also gave the world its first drugs for immunosuppression.

What is immunosuppression?

Continue reading

Two birds, one stone?

This week interesting research was published in the journal EMBO that looked at the Parkinson’s-associated protein Leucine-rich repeat kinase 2 (or LRRK2).

In their study, the researchers discovered that lowering levels of LRRK2 protein (in cells and animals) affected the ability of Mycobacterium tuberculosis – the bacteria that causes Tuberculosis – to replicate.

In today’s post, we will discuss what Tuberculosis is, how it relates to LRRK2 and Parkinson’s, and we will consider why this is potentially REALLY big news for Parkinson’s.


Daedalus and Icarus. Source: Skytamer

In Greek Mythology, there is the tale of Daedalus and Icarus.

Daedalus was a really smart guy, who designed the labyrinth on Crete, which housed the Minotaur (the ‘part man, part bull’ beast). For all his hard work, however, Daedalus was shut up in a tower and held captive by King Minos to stop the knowledge of his Labyrinth from spreading to the general public.

Source: Clansofhonor

But a mere tower was never going to stop Daedalus, and he set about fabricating wings for himself and his young son Icarus (who was also a captive).

Being stuck in the tower limited Daedalus’ access to feathers for making those wings, except of course for the large birds of prey that circled the tower awaiting the demise of Daedalus and his son. But he devised a clever way of throwing stones at the birds in such a way, that he is able to strike one bird and then the ricochet would hit a second bird.

And thus, the phase ‘killing two birds with one stone’ was born (or so it is said – there is also a Chinese origin for the phrase – Source).

Interesting. And this relates to Parkinson’s how?!?

Well, this week researchers in the UK have discovered that a protein associated with Parkinson’s is apparently also associated with another condition: Tuberculosis. And they also found that treatments being designed to target this protein in Parkinson’s, could also be used to fight Tuberculosis.

Two birds, one stone.

What is Tuberculosis?

Continue reading

DUBstop: Oxford-style

6f132840eddef84e3e27af4b940cb0d1

This week multiple research groups at the University of Oxford and Boston-based FORMA Therapeutics announced a collaboration to identify, validate and develop deubiquitinating enzyme (DUB) inhibitors for the treatment of neurodegenerative conditions, like Parkinson’s.

But what exactly are DUB inhibitors? And how do they work?

In today’s post, we will answer these questions, look at what the new collaboration involves, and look at what else is happening with DUB inhibitors for Parkinson’s.


dubstep_color_and_white_by_dtfproductions-d3admfb

Source: Blog4dubstep

Dubstep is a genre of electronic dance music that originated in South London in the late 1990s. Only recently -in the 2010s – has the culture really become more mainstream. And while I have a hard time appreciating the heavy bass music (man, I am becoming a grumpy old man before my time), it is amazing to watch some of the dancers who robotically embody this form of music:

The guy on the right is named Marquese Scott. Sometimes he simply defies the laws of physics.

The title of today’s post is a play on words, because rather than doing ‘Dubstep’ we are going to be discussing how to ‘DUB-stop’.

Researchers in Oxford have recently signed an agreement with a US company to focus resources and attention on a new approach for tackling neurodegenerative conditions, including Parkinson’s.

What they are proposing is a complicated biological dance.

Their idea: to stop deubiquitinating (DUB) enzymes.

What are deubiquitinating enzymes?

Continue reading

UDCA 2.0 = TUDCA?

Ursodeoxycholic acid (UDCA) has been proposed as a drug that could be repurposed for Parkinson’s. As a medication, it is called ‘Ursodiol‘ and it is used to treat gallstones.

But there are absorption issues with UDCA: The passage of UDCA through the wall of the small intestine is slow and incomplete (Source).

There may be a solution, however, called Tauroursodeoxycholic acid (TUDCA). Think of it as UDCA-2.0. It is more easily absorbed by the gut. And there is also good evidence to suggest that it has the same beneficial neuroprotective properties as UDCA.

In today’s post we will discuss what exactly UDCA and TUDCA are, review the Parkinson’s research for both, and discuss why one of these drugs should be tested in the clinic for PD.


Gallstones – ouch! Source: Healthline

Let me introduce you to your gallbladder:

It is one of the less appreciated organs; a pear-shaped, hollow organ located just under your liver and on the right side of your body. Its primary function is to store and concentrate your bile. Bile is a yellow-brown digestive enzyme – made and released by the liver – which helps with the digestion of fats in your small intestine (the duodenum).

Source: Mayoclinic

Now, let me introduce you to your gallstones:

Gallstones are hardened deposits that can form in your gallbladder. About 80% of gallstones are made of cholesterol. The remaining 20% of gallstones are made of calcium salts and bilirubin. Bilirubin is the yellow pigment in bile. When the body produces too much Bilirubin or cholesterol, gallstones can develop.

About 10-20% of the population have gallstones (Source), but the vast majority experience no symptoms and need no treatment.

Interesting intro, but what does any of this have to do with Parkinson’s?

One of the treatments for gallstones is called UDCA. And this compound is being considered for “repurposing” as a treatment for Parkinson’s.

What is UDCA?

Continue reading

FASN-ating PINK research

Pink

In 2018, there is one particular clinical trial that I will be watching, because the drug being tested could have a big impact on certain kinds of Parkinson’s.

The clinical trial is focused on people with cancer and they will be treated with a drug called TVB-2640TVB-2640 is an inhibitor of an enzyme called fatty acid synthase (or FAS). 

In today’s post we will discuss why TVB-2640 might be a useful treatment for certain kinds of Parkinson’s.


Mitochondria

Mitochondria and their location in the cell. Source: NCBI

 

Regular readers of this blog are probably getting sick of the picture above.

I use it regularly on this website, because a.) it nicely displays a basic schematic of a mitochondrion (singular), and where mitochondria (plural) reside inside a cell. And b.) a lot of evidence is pointing towards mitochondrial dysfunction in Parkinson’s.

What are mitochondria?

Mitochondria are the power stations of each cell. They help to keep the lights on. Without them, the party is over and the cell dies.

How do they supply the cell with energy?

They convert nutrients from food into Adenosine Triphosphate (or ATP). ATP is the fuel which cells run on. Given their critical role in energy supply, mitochondria are plentiful (some cells have thousands) and highly organised within the cell, being moved around to wherever they are needed.

Source: Mangomannutrition

What does this have to do with Parkinson’s?

Continue reading

The road ahead: Parkinson’s research in 2018

The great ice hockey player Wayne Gretzky once said “A good hockey player plays where the puck is. A great hockey player plays where the puck is going to be” (the original quote actually came from his father, Walter). 

At the start of each year, it is a useful practise to layout what is planned for the next 12 months. This can help us better anticipate where ‘the puck’ will be, and allow us to prepare for things further ahead.

2017 was an incredible year for Parkinson’s research, and there is a lot already in place to suggest that 2018 is going to be just as good (if not better).

In this post, we will lay out what we can expect over the next 12 months with regards to the Parkinson’s-related clinical trials research of new therapies.


Charlie Munger (left) and Warren Buffett. Source: Youtube

Many readers will be familiar with the name Warren Buffett.

The charming, folksy “Oracle of Omaha” is one of the wealthiest men in the world. And he is well known for his witticisms about investing, business and life in general.

Warren Buffett. Source: Quickmeme

He regularly provides great one liners like:

“We look for three things [in good business leaders]: intelligence, energy, and integrity. If they don’t have the latter, then you should hope they don’t have the first two either. If someone doesn’t have integrity, then you want them to be dumb and lazy”

“Work for an organisation of people you admire, because it will turn you on. I always worry about people who say, ‘I’m going to do this for ten years; and if I really don’t like it very much, then I’ll do something else….’ That’s a little like saving up sex for your old age. Not a very good idea”

“Choosing your heroes is very important. Associate well, marry up and hope you find someone who doesn’t mind marrying down. It was a huge help to me”

Mr Buffett is wise and a very likeable chap.

Few people, however, are familiar with his business partner, Charlie Munger. And Charlie is my favourite of the pair.

Continue reading

2017 – Year in Review: A good vintage

At the end of each year, it is a useful practise to review the triumphs (and failures) of the past 12 months. It is an exercise of putting everything into perspective. 

2017 has been an incredible year for Parkinson’s research.

And while I appreciate that statements like that will not bring much comfort to those living with the condition, it is still important to consider and appreciate what has been achieved over the last 12 months.

In this post, we will try to provide a summary of the Parkinson’s-related research that has taken place in 2017 (Be warned: this is a VERY long post!)


The number of research reports and clinical trial studies per year since 1817

As everyone in the Parkinson’s community is aware, in 2017 we were observing the 200th anniversary of the first description of the condition by James Parkinson (1817). But what a lot of people fail to appreciate is how little research was actually done on the condition during the first 180 years of that period.

The graphs above highlight the number of Parkinson’s-related research reports published (top graph) and the number of clinical study reports published (bottom graph) during each of the last 200 years (according to the online research search engine Pubmed – as determined by searching for the term “Parkinson’s“).

PLEASE NOTE, however, that of the approximately 97,000 “Parkinson’s“-related research reports published during the last 200 years, just under 74,000 of them have been published in the last 20 years.

That means that 3/4 of all the published research on Parkinson’s has been conducted in just the last 2 decades.

And a huge chunk of that (almost 10% – 7321 publications) has been done in 2017 only.

So what happened in 2017? Continue reading

Novartis focuses on improving PARKIN control

Last week, as everyone was preparing for Christmas celebrations, researchers at the pharmaceutic company Novartis published new research on a gene that is involved with Parkinson’s, called PARKIN (or PARK2).

They used a new gene editing technology – called CRISPR – to conduct a large screening study to identify proteins that are involved with the activation of PARKIN.

In today’s post we will look at what PARKIN does, review the research report, and discuss how these results could be very beneficial for the Parkinson’s community.


Source: Novartis

As many people within the Parkinson’s community will be aware, 2017 represented the 200th anniversary of the first report of Parkinson’s disease by James Parkinson.

It also the 20th anniversary of the discovery of first genetic mutation (or variant) that increases the risk of developing Parkinson’s. That genetic variation occurs in a region of DNA (a gene) called ‘alpha synuclein’. Yes, that same alpha synuclein that seems to play such a critical role in Parkinson’s (Click here to read more about the 20th anniversary).

In 2018, we will be observing the 20th anniversary of the second genetic variation associated with Parkinson.

That gene is called PARKIN:

Title: Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism.
Authors: Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N
Journal: Nature. 1998 Apr 9; 392(6676):605-8
PMID: 9560156

In 1998, Japanese researchers published this report based on 5 individuals from 4 Japanese families who were affected by juvenile-onset Parkinson’s. In family 1, the affected individual was a female, 43 years old, born of first-cousin parents, and her two younger brothers are healthy. Her condition was diagnosed in her teens and it had then progressed very slowly afterwards. Her response to L-dopa was very positive, but L-dopa-induced dyskinesia were frequent. In family 2-4, affected individuals (born to unrelated parents) exhibited very similar clinical features to the subject in family 1. The age of onset was between 18 to 27 years of age.

Using previous research and various techniques the investigators were able to isolate genetic variations that were shared between the 5 affected individuals. They ultimately narrowed down their search to a section of DNA containing 2,960 base pairs, which encoded a protein of 465 amino acids.

They decided to call that protein PARKIN.

PARKIN Protein. Source: Wikipedia

How much of Parkinson’s is genetic?

Continue reading

Beware of the PINK-SNO(W) man!

There is a protein in most of the cells in your body called “PTEN-induced putative kinase 1″ (or simply PINK1). It plays an important role in keeping your cells healthy.

Genetic variations in the PINK1 gene have been shown to increase ones risk of developing Parkinson’s. 

This week researchers have identified a method by which the function of the PINK1 protein can be inhibited and this results in increased vulnerability to Parkinson’s. In this post, we will look at what PINK1 does, how it is inhibited, and what this could mean for the Parkinson’s community.


ampkmito-945x466

Mitochondria (green) in health cells (left) and in unhealthy cells (right).
The nucleus of the cell is in blue. Source: Salk Institute

I have previously spoken a lot about mitochondria and Parkinson’s on this website.

For the uninitiated, mitochondria are the power house of each cell. They help to keep the lights on. Without them, the party is over and the cell dies.

Mitochondria

Mitochondria and their location in the cell. Source: NCBI

You may remember from high school biology class that mitochondria are tiny bean-shaped objects within the cell. They convert nutrients from food into Adenosine Triphosphate (or ATP). ATP is the fuel which cells run on. Given their critical role in energy supply, mitochondria are plentiful (some cells have thousands) and highly organised within the cell, being moved around to wherever they are needed.

Like you and I and all other things in life, however, mitochondria have a use-by date.

As mitochondria get old and worn out (or damaged) with time, the cell will recycle them via a process called mitophagy (a blending of the words mitochondria and autophagy which is the waste disposal system of each cell).

What does this have to do with Parkinson’s disease?

Continue reading