Tagged: status

Editorial: Orphan drug tax credit

Here at the SoPD we are politically neutral.

That said, I will report on events that directly impact the world of Parkinson’s disease research (without adding too much in the way of personal opinions). 

Recent legislation introduced in the US congress could have major implications for subsets of the Parkinson’s disease community, as well as a host of additional medical conditions. The legislation is seeking to remove the orphan drug tax credit.

In today’s post, we will have a look at what the orphan drug tax credit is, and why its removal could be damaging for Parkinson’s.


capitol-hill-parking

The United States Capitol. Source: SpotHeroBlog

On November 2, House Republican lawmakers introduced a bill to reform the U.S. tax code. The complicated tax system probably needs a serious clean up, but the legislation will also terminate something called the orphan drug tax credit.

What is the orphan drug tax credit?

Continue reading

Advertisements

Higher socioeconomic status jobs

o-INEQUALITY-GIF-facebook

People with high socioeconomic status jobs are believed to be better off in life.

New research published last week by the Centre for Disease Control, however, suggests that this may not be the case with regards to one’s risk of developing Parkinson’s disease.

In today’s post we will review the research and discuss what it means for our understanding of Parkinson’s disease.


childrenoflo

The impact of socioeconomic status. Source: Medicalxpress

In 2013, a group of researchers at Carnegie Mellon University found a rather astonishing but very interesting association:

Children from lower socioeconomic status have shorter telomeres as adults.

Strange, right?

Yeah, wow, strange… sorry, but what are telomeres?

Do you remember how all of your DNA is wound up tightly into 23 pairs of chromosomes? Well, telomeres are at the very ends of each of those chromosomes. They are literally the cap on each end. The name is derived from the Greek words ‘telos‘ meaning “end”, and ‘merοs‘ meaning “part”.

Telomeres are regions of repetitive nucleotide sequences (think the As, Gs, Ts, & Cs that make up your DNA) at each end of a chromosome. Their purpose seems to involve protecting the end of each chromosome from deteriorating or fusing with neighbouring chromosomes. Researchers also use their length is a marker of ageing because every time a cell divides, the telomeres on each chromosome gradually get shorter.

Continue reading