Tagged: study

Objective measures: Getting smart about pills

There has been a lot of discussion on this site (and elsewhere on the web) regarding the need for more objective systems of measuring Parkinson’s – particularly in the setting of clinical trials.

Yes, subjective reports of patient experience are important, but they can easily be biased by ‘placebo responses’.

Thus, measures that are beyond the clinical trial participants conscious control – and focused on biological outcomes – are needed. 

In today’s post, we will consider one possible approach: Smart pills. We will discuss what they are, how they work, and how they could be applied to Parkinson’s research.


Source: Chicagotribune

In order to encourage a growing discussion regarding objective measures of Parkinson’s (and to follow up on previous rants – Click here and here for examples), I have decided to regularly (once a month) highlight new technologies that could provide the sort of unbiased methods of data collection that are required for assessing whether a treatment is having an impact on Parkinson’s.

Today, we will look at smart pills.

What is a smart pill?

Continue reading

Advertisements

Making. It. Personal.

This is one of those post (read: rants) where I want to put an idea out into the ether for someone to chew on. It starts with a very simple question:

Why is ‘the drug’ the focus of a clinical trial?

If our goal is to find beneficial therapies for people with Parkinson’s, then the way we currently clinically test drugs is utterly nonsensical.

And if we do not change our “we’ve always done it this way” mindset, then we are simply going to repeat the mistakes of the past. Others are changing, so why aren’t we?

In today’s post, we will consider one possible alternative approach.


I hope you know who Grace Hopper is – if not, click here. Source: Mentalfloss

Why is ‘the drug‘ the focus of a clinical trial?

The way we clinically test drugs makes absolutely no sense when you actually stop and think about it.

Other medical disciplines (such as oncology) have woken up to this fact, and it is time for the field of Parkinson’s research to do this same.

Let me explain:

Continue reading

The Parkinson’s association-‘s’

In an effort to better understand Parkinson’s, researchers have repeatedly analysed data from large epidemiological studies in order to gain insight into factors that could have a possible causal influence in the development of the condition.

This week a manuscript was made available on the preprint website BioRxiv that provided us with a large database of information about aspects of life that are associated with increased incidence of Parkinson’s. 

Some new associations have been made… and some of them are intriguing, while others are simply baffling!

In today’s post, we will have a look at what has been learnt from epidemiological research on Parkinson’s, and then discuss the new research and what it could mean for Parkinson’s. 



What are the differentiators? Source: Umweltbundesamt

What makes me different from you?

Other than my ridiculous height and the freakishly good looks, that is. What influential factors have resulted in the two of us being so different?

Yes, there is the genetics component playing a role, sure. 7,500 generations of homo sapien has resulted in a fair bit of genetic variation across the species (think red hair vs brown hair, dark skin vs light skin, tall Scandinavians vs African pygmies, etc). And then there are aspects like developmental noise and epigenetics (factors that cause modifications in gene activity rather than altering the genetic code itself).

Source: Presentationvoice

And over-riding all of this, is a bunch of other stuff that we generally refer to simply as ‘life’. Habits and routines, likes and dislikes, war and famine, etc. The products of how we interact with the environment, and how it interacts with us.

But which of all these factors plays a role in determining our ultimate outcome?

It is a fascinating question. One that absorbs a large area of medical research, particularly with regards to factors that could be influential in causing a specific chronic conditions.

What does this have to do with Parkinson’s?

Continue reading

Monthly Research Review – February 2018

At the end of each month, the Science of Parkinson’s writes a post which provides an overview of some of the major pieces of Parkinson’s-related research that were made available.

In this post we review some of the research from February 2018.

The post is divided into four parts based on the type of research (Basic biology, disease mechanism, clinical research, and other news). 


Seeing shadows: Punxsutawney Phil. Source: Wordonfire

In major world event news: On the 2nd February of 2018, Punxsutawney Phil – the groundhog who resides at Gobbler’s Knob of Punxsutawney, Pennsylvania – scurried out of his little hole and saw his shadow. This omen indicates that we have a long winter. Given how hard and bitter this particular winter has been, Americans naturally rejoiced.

On the 6th February, SpaceX successfully launched a Tesla sports car into space – see the video below for the highlights (and if you don’t have time to watch it all, at the very least jump forward to 3:45 and watch the two boosters land simultaneously – surely they didn’t plan for it to be that perfect!)

In other news, on the 1st February, the Centers for Disease Control and Prevention announced that it was dramatically downsizing its epidemic prevention activities in 39 out of 49 countries, due to concerns about funding.

And of course we had the 2018 Winter Olympics – where New Zealand came in 27th on the medals board:

Source: Madison365

In the world of Parkinson’s research, a great deal of new research and news was reported.

In February 2018, there were 698 research articles added to the Pubmed website with the tag word “Parkinson’s” attached (1577 for all of 2018 so far). In addition, there was a wave to news reports regarding various other bits of Parkinson’s research activity (clinical trials, etc).

The top 5 pieces of PD news

Continue reading

Clinical trials: The Power of One

As the age of personalised medicine approaches, innovative researchers are rethinking the way we conduct clinical studies. “Rethinking” in radical ways – think: individualised clinical trials! 

One obvious question is: Can you really conduct a clinical trial involving just one participant?

In this post, we will look at some of the ideas and evaluate the strengths and weaknesses these approaches.


A Nobel prize medal. Source: Motley

In the annals of Nobel prize history, there are a couple winners that stands out for their shear….um, well,…audacity.

One example in particular, was the award given to physician Dr Werner Forssmann. In 1956, Andre Cournand, Dickinson Richards and Forssmann were awarded the Nobel Prize in Physiology or Medicine “for their discoveries concerning heart catheterisation and pathological changes in the circulatory system”. Forssmann was responsible for the first part (heart catheterisation).

Source: Nobelprize

In 1929, at the age of 25, Forssmann performed the first human cardiac catheterisation – that is a procedure that involves inserting a thin, flexible tube directly into the heart via an artery (usually in the arm, leg or neck). It is a very common procedure performed on a daily basis in any hospital today. But in 1929, it was revolutionary. And the audacious aspect of this feat was that Forssmann performed the procedure on himself!

And if you think that is too crazy to be true, please read on.

But be warned: this particular story gets really bonkers.

Continue reading

Resveratrol’s neglected siblings

 

We have previously discussed the powerful antioxidant Resveratrol, and reviewed the research suggesting that it could be beneficial in the context of Parkinson’s disease (Click here to read that post).

I have subsequently been asked by several readers to provide a critique of the Parkinson’s-associated research focused on Resveratrol’s twin sister, Pterostilbene (pronounced ‘Terra-still-bean’).

But quite frankly, I can’t.

Why? Because there is NO peer-reviewed scientific research on Pterostilbene in models of Parkinson’s disease.

In today’s post we will look at what Pterostilbene is, what is known about it, and why we should seriously consider doing some research on this compound (and its cousin Piceatannol) in the context of Parkinson’s disease.


Blue berries are the best natural source of Pterostilbene. Source: Pennington

So this is likely to be the shortest post in SoPD history.

Why?

Because there is nothing to talk about.

There is simply no Parkinson’s-related research on the topic of today’s post: Pterostilbene. And that is actually a crying shame, because it is a very interesting compound.

What is Pterostilbene?

Like Resveratrol, Pterostilbene is a stilbenoid.

Stilbenoids are a large class of compounds that share the basic chemical structure of C6-C2-C6:

Resveratrol is a good example of a stilbenoid. Source: Wikipedia

Stilbenoids are phytoalexins (think: plant antibiotics) produced naturally by numerous plants. They are small compounds that become active when the plant is under attack by pathogens, such as bacteria or fungi. Thus, their function is generally considered to part of an anti-microbial/anti-bacterial plant defence system for plants.

The most well-known stilbenoid is resveratrol which grabbed the attention of the research community in a 1997 study when it was found to inhibit tumour growth in particular animal models of cancer:

Continue reading

We need a clinical trial of broccoli. Seriously!

In a recent post, I discussed research looking at foods that can influence the progression of Parkinson’s (see that post here). I am regularly asked about the topic of food and will endeavour to highlight more research along this line in future post.

In accordance with that statement, today we are going to discuss Cruciferous vegetables, and why we need a clinical trial of broccoli.

I’m not kidding.

There is growing research that a key component of broccoli and other cruciferous vegetables – called Glucoraphanin – could have beneficial effects on Parkinson’s disease. In today’s post, we will discuss what Glucoraphanin is, look at the research that has been conducted and consider why a clinical trial of broccoli would be a good thing for Parkinson’s disease.


 

Cruciferous vegetables. Source: Diagnosisdiet

Like most kids, when I was young I hated broccoli.

Man, I hated it. With such a passion!

Usually they were boiled or steamed to the point at which they have little or no nutritional value, and they largely became mush upon contact with my fork.

The stuff of my childhood nightmares. Source: Modernpaleo

As I have matured (my wife might debate that statement), my opinion has changed and I have come to appreciate broccoli. Our relationship has definitely improved.

In fact, I have developed a deep appreciation for all cruciferous vegetables.

And yeah, I know what you are going to ask:

What are cruciferous vegetables?

Cruciferous vegetables are vegetables of the Brassicaceae family (also called Cruciferae). They are a family of flowering plants commonly known as the mustards, the crucifers, or simply the cabbage family. They include cauliflower, cabbage, garden cress, bok choy, broccoli, brussels sprouts and similar green leaf vegetables.

Cruciferous vegetables. Source: Thetherapyshare

So what have Cruciferous vegetables got to do with Parkinson’s?

Well, it’s not the vegetables as such that are important. Rather, it is a particular chemical that this family of plants share – called Glucoraphanin – that is key.

What is Glucoraphanin?

Continue reading

Plan B: Itchy velvet beans – Mucuna pruriens

Mucuna-Pruriens-Mood-and-Hormone-Velvet-Bean

The motor features of Parkinson’s disease can be managed with treatments that replace the chemical dopamine in the brain. 

While there are many medically approved dopamine replacement drugs available for people affected by Parkinson’s disease, there also are more natural sources.

In today’s post we will look at the science and discuss the research supporting one of the most potent natural source for dopamine replacement treatment: Mucuna pruriens


Plan.B-oneway

Source: Yourtimeladies

When asked by colleagues and friends what is my ‘plan B’ (that is, if the career in academia does not play out – which is highly probable I might add – Click here to read more about the disastrous state of biomedical research careers), I answer that I have often considered throwing it all in and setting up a not-for-profit, non-governmental organisation to grow plantations of a tropical legume in strategic places around the world, which would provide the third-world with a cheap source of levodopa – the main treatment in the fight against Parkinson’s disease.

Mucuna_pruriens_08

Plan B: A legume plantation. Source: Tropicalforages

The response to my answer is generally one of silent wonder – that is: me silently wondering if they think I’m crazy, and them silently wondering what on earth I’m talking about.

As romantic as the concept sounds, there is an element of truth to my Plan B idea.

I have read many news stories and journal articles about the lack of treatment options for those people with Parkinson’s disease living in the developing world.

South-Africa-hospital

Hospital facilities in the rural Africa. Source: ParkinsonsLife

Some of the research articles on this topic provide a terribly stark image of the contrast between people suffering from Parkinson’s disease in the developing world versus the modernised world. A fantastic example of this research is the work being done by the dedicated researchers at the Parkinson Institute in Milan (Italy), who have been conducting the “Parkinson’s disease in Africa collaboration project”.

5x1000.banner-5x1000-2017-medicigk-is-331

The researchers at the Parkinson Institute in Milan. Source: Parkinson Institute 

The project is an assessment of the socio-demographic, epidemiological, clinical features and genetic causes of Parkinson’s disease in people attending the neurology out-patients clinic of the Korle Bu Teaching and Comboni hospitals. Their work has resulted in several really interesting research reports, such as this one:

Ghana
Title: The modern pre-levodopa era of Parkinson’s disease: insights into motor complications from sub-Saharan Africa.
Authors: Cilia R, Akpalu A, Sarfo FS, Cham M, Amboni M, Cereda E, Fabbri M, Adjei P, Akassi J, Bonetti A, Pezzoli G.
Journal: Brain. 2014 Oct;137(Pt 10):2731-42.
PMID: 25034897          (This article is OPEN ACCESS if you would like to read it)

In this study, the researchers collected data in Ghana between December 2008 and November 2012, and each subject was followed-up for at least 6 months after the initiation of Levodopa therapy. In total, 91 Ghanaians were diagnosed with Parkinson’s disease (58 males, average age at onset 60 ± 11 years), and they were compared to 2282 Italian people with Parkinson’s disease who were recruited during the same period. In long-term follow up, 32 Ghanaians with Parkinson’s disease were assessed (with an average follow period of 2.6 years).

There are some interesting details in the results of the study, such as:

  • Although Levodopa therapy was generally delayed – due to availability and affordability – in Ghana (average disease duration before Levodopa treatment was 4.2 years in Ghana versus just 2.4 years in Italy), the actual disease duration – as determined by the occurrence of motor fluctuations and the onset of dyskinesias – was similar in the two populations.

Ghana2

Source: PMC

  • The motor fluctuations were similar in the two populations, with a slightly lower risk of dyskinesias in Ghanaians.
  • Levodopa daily doses were higher in Italians, but this difference was no longer significant after adjusting for body weight.
  • Ghanaian Parkinson’s sufferers who developed dyskinesias were younger at onset than those who did not.

Reading these sorts of research reports, I am often left baffled by the modern business world’s approach to medicine. I am also left wondering how an individual’s experience of Parkinson’s disease in some of these developing nations would be improved if a cheap alternative to the dopamine replacement therapies was available.

Are any cheap alternatives available?

Continue reading

Exenatide: An editorial

editorial

In my previous post, we briefly reviewed the results of the phase II double-blind, randomised clinical trial of Exenatide in Parkinson’s disease. The study indicates a statistically significant effect on motor symptom scores after being treated with the drug.

Over the last few days, there have been many discussions about the results, what they mean for the Parkinson’s community, and where things go from here, which have led to further questions.

In this post I would like to address several matters that have arisen which I did not discuss in the previous post, but that I believe are important.


bydureon

I found out about the Exenatide announcement – via whispers online – on the afternoon of the release. And it was in a mad rush when I got home that night that I wrote up the post explaining what Exenatide is. I published the post the following evening however because I could not access the research report from home (seriously guys, biggest finding in a long time and it’s not OPEN ACCESS?!?!?) and I had to wait until I got to work the next day to actually view the publication.

I was not really happy with the rushed effort though and decided to follow up that post. In addition, there has been A LOT of discussion about the results over the weekend and I thought it might be good to bring aspects of those different discussion together here. The individual topics are listed below, in no particular order of importance:

1. Size of the effect

There are two considerations here.

Firstly, there have been many comments about the actual size of the effect in the results of the study itself. When people have taken a deeper look at the findings, they have come back with questions regarding those findings.

And second, there have also been some comments about the size of the effect that this result has already had on the Parkinson’s community, which has been considerable (and possibly disproportionate to the actual result).

The size of the effect in the results

The results of the study suggested that Exenatide had a positive effect on the motor-related symptoms of Parkinson’s over the course of the 60 week trial. This is what the published report says, it is also what all of the media headlines have said, and it sounds really great right?

The main point folks keep raising, however, is that the actual size of the positive effect is limited to just the motor features of Parkinson’s disease. If one ignores the Unified Parkinson’s Disease Rating Scale (UPDRS) motor scores and focuses on the secondary measures, there isn’t much to talk about. In fact, there were no statistically significant differences in any of the secondary outcome measures. These included:

Continue reading

Tetrabenazine: A strategy for Levodopa-induced dyskinesia?

Dyk

For many people diagnosed with Parkinson’s disease, one of the scariest prospects of the condition that they face is the possibility of developing dyskinesias.

Dyskinesias are involuntary movements that can develop after long term use of the primary treatment of Parkinson’s disease: Levodopa

In todays post I discuss one experimental strategy for dealing with this debilitating aspect of Parkinson’s disease.


Dysco

Dyskinesia. Source: JAMA Neurology

There is a normal course of events with Parkinson’s disease (and yes, I am grossly generalising here).

First comes the shock of the diagnosis.

This is generally followed by the roller coaster of various emotions (including disbelief, sadness, anger, denial).

Then comes the period during which one will try to familiarise oneself with the condition (reading books, searching online, joining Facebook groups), and this usually leads to awareness of some of the realities of the condition.

One of those realities (especially for people with early onset Parkinson’s disease) are dyskinesias.

What are dyskinesias?

Dyskinesias (from Greek: dys – abnormal; and kinēsis – motion, movement) are simply a category of movement disorders that are characterised by involuntary muscle movements. And they are certainly not specific to Parkinson’s disease.

As I have suggested in the summary at the top, they are associated in Parkinson’s disease with long-term use of Levodopa (also known as Sinemet or Madopar).

7001127301-6010801

Sinemet is Levodopa. Source: Drugs

Continue reading