Tagged: aggregation

A vaccine for Parkinson’s – the AFFiRiS update

This week Austrian biotech firm, AFFiRiS AG, made an announcement regarding their experimental immunotherapy/’vaccine’ approach for Parkinson’s.

In their press release, the company provided the results of a long-term Phase I clinical trial testing the tolerability and safety of their treatment AFFITOPE® PD01A.

The treatment was found to be safe and well-tolerated in people with Parkinson’s. But there was one sentence which was particularly intriguing in the press release regarding clinical symptoms.

In today’s post, we will discuss what is meant by ‘immunotherapy’, outline what this particular clinical trial involved, review the results, and explore what this could mean for the Parkinson’s community.


Source: uib

I have previously mentioned on this website that any ‘cure for Parkinson’s’ is going to require three components:

  1. A disease halting mechanism
  2. A neuroprotective agent
  3. Some form of cell replacement therapy

This week we got some interesting clinical news regarding the one of these components: A disease halting mechanism

Clinical trial results from Austria suggest that a new immunotherapy approach in people with Parkinson’s is both safe and well tolerated over long periods of time.

What is immunotherapy?

Continue reading

I’ll have the fish please

We have previously discussed the importance of the right foods for people with Parkinson’s on this blog – Click here for a good example.

Recently, new data from researchers in Sweden points towards the benefits of a specific component of fish in particular.

It is a protein called β-parvalbumin, which has some very interesting properties.

In today’s post, we discuss what beta-parvalbumin is, review the new research findings, and consider how this new information could be applied to Parkinson’s.


A very old jaw bone. Source: Phys

In 2003, researchers found 34 bone fragments belonging to a single individual in a cave near Tianyuan, close to Beijing (China).

But it was not the beginning of a potential murder investigation.

No, no.

This was the start of something far more interesting.

Naming the individual “Tianyuan man”, the researchers have subsequently found that “many present-day Asians and Native Americans” are genetically related to this individual. His bones represented one of the oldest set of modern human remains ever found in the eastern Eurasia region.

Tianyuan caves. Source: Sciencemag

But beyond the enormous family tree, when researchers further explored specific details about his jaw bone (or lower mandible as it is called) they found something else that was very interesting about Tianyuan man:


Title: Stable isotope dietary analysis of the Tianyuan 1 early modern human.
Authors: Hu Y, Shang H, Tong H, Nehlich O, Liu W, Zhao C, Yu J, Wang C, Trinkaus E, Richards MP.
Journal: Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):10971-4.
PMID: 19581579                     (This research article is OPEN ACCESS if you would like to read it)

In this study, the investigators analysed the carbon and nitrogen isotopes found within bone collagen samples taken from the jaw bone of Tianyuan man. In humans, the carbon and nitrogen isotope values indicate the sources of dietary protein over many years of life.

The researchers found that a substantial portion of Tianyuan man’s diet 40,000 years ago came from freshwater fish.

Interesting preamble, but what does this have to do with Parkinson’s?

Continue reading

On the importance of Calcium

Recently researcher from the University of Cambridge reported that an imbalance in calcium and the Parkinson’s-associated protein alpha synuclein can cause the clustering of synaptic vesicles.

What does this mean? And should we reduce our calcium intake as a result?

In today’s post, we will review the research report, consider the biology behind the findings and how it could relate to Parkinson’s, and discuss what can or should be done.


Me and Brie. Source: Wikipedia

When I turned 25, I realised that my body no longer accepted cheese.

This was a very serious problem.

You see, I still really liked cheese.

A bottle of red wine, a baguette and a chunk of brie – is there any better combination in life?

So obviously my body and I had a falling out. And yes, it got ugly. I wanted things to keep going the way they had always been, so I tried to make things interesting with new and exotic kinds of cheeses, which my body didn’t want to know about it. It rejected all of my efforts. And after a while, I gradually started resenting my body for letting me be who I was.

We sought help. We tried interventions. But sadly, nothing worked.

And then things got really bad: My body decided that it didn’t have room in its life for yogurt, milk or even ice cream anymore (not even ice cream!!!). Basically no dairy what so ever.

There’s something’s missing in my life. Source: Morellisices

OMG. How did you survive without ice cream?

Well, I’ll tell ye – it’s been rough.

All silliness aside though, here is what I know: It is actually very common to develop a lactase deficiency as we get older – lactase being the enzyme responsible for the digestion of whole milk. In fact, about 65% of the global population has a reduced ability to digest lactose after infancy (Source: NIH). I am not lactose intolerant (one of the few tests that I actually aced in my life), but I do have trouble digesting a particular component of dairy products – which can result in discomfort and socially embarrassing situations (one day over a drink I’ll tell you the ‘cheese fondue story’). Curiously, that mystery ingredient is also present in products that have no dairy (such as mayonnaise – it absolutely kills me).

But spare me your tears, if one is forced to drop a particular food group, dairy is not too bad (if I am ever forced to give up wine, I swear I’ll go postal).

My biggest concern when I dropped dairy, however, was “where was I going to get my daily requirements of calcium?“.

Understand that calcium is really rather important.

Why is calcium important?

Continue reading

The aggregating antics of (some) anaesthetics

This is one of those posts that I am reluctant to write because there is the very real possibility of it being taken out of context and causing someone to panic. But several readers have asked me to address a new piece of research that was published this week which has them concerned.

Anaesthetics are very useful agents in medicine, but they have long been known to have biological effects beyond simply numbing/sedating individuals. Some of those effects are beneficial, while others….mmm, not so beneficial. And the new research published this week leans towards the latter: Certain anaesthetics apparently induce mutant protein aggregation in neurons and cause stress responses in those brain cells.

In today’s post, we will discuss what anaesthetics are, how (we think) they work, and what the results of this new research actually mean.


William Morton’s first public demonstration. Source: Pinterest

On Friday 16th October 1846, history was made.

On that date, an American dentist named William T. G. Morton (1819-1868) made the first public demonstration of the use of inhaled ether as a surgical anaesthetic.

William Morton. Source: Wikipedia

At this demonstration Dr. John Collins Warren painlessly removed a tumor from the neck of a Mr. Edward Gilbert Abbott. After finishing the operation and Abbott had regained consciousness, Warren asked Abbott how he felt.

John Collins Warren. Source: General-anaesthesia

Abbott replied, “Feels as if my neck’s been scratched.”

Warren then turned to the medical audience and said:

“Gentlemen, this is no Humbug”

This was an obvious shot at an unsuccessful demonstration of nitrous oxide as a anaesthesia the year before (by Horace Wells in the same theatre), which ended with the audience shouting “Humbug!” after they heard the patient groaning with pain during the procedure.

The important thing to appreciate here is the magnitude of Morton’s achievement within in the history of medicine.

Before 16th October 1846, surgical procedures were not very pleasant affairs.

After 16th October 1846,… well, to be honest, they are still not very pleasant affairs, but at least the patient can skip most of the painful parts of an operation.

Interesting. But what does this have to do with Parkinson’s?

Continue reading

Reduce your RAGE as you AGE

An Advanced Glycation Endproduct (or AGE) is a protein or lipid that has become glycated.

Glycation is a haphazard process that impairs the normal functioning of molecules. It occurs as a result of exposure to high amounts of sugar. These AGEs are present at above average levels in people with diabetes and various ageing-related disorders, including neurodegenerative conditionsAGEs have been shown to trigger signalling pathways within cells that are associated with both oxidative stress and inflammation, but also cell death.

RAGE (or receptor of AGEs) is a molecule in a cell membrane that becomes activated when it interacts with various AGEs. And this interaction mediates AGE-associated toxicity issues. Recently researchers found that that neurons carrying the Parkinson’s associated LRRK2 G2019S genetic variant are more sensitive to AGEs than neurons without the genetic variant. 

In today’s post we will look at what AGE and RAGE are, review the new LRRK2 research, and discuss how blocking RAGE could represent a future therapeutic approach for treating Parkinson’s.


The wonder of ageing. Source: Club-cleo

NOTE: Be warned, the reading of this post may get a bit confusing. We are going to be discussing ageing (as in the body getting old) as well as AGEing (the haphazard process processing of glycation). For better clarification, lower caps ‘age’ will refer to getting old, while capitalised ‘AGE’ will deal with that glycation process. I hope this helps.


Ageing means different things to different people.

For some people ageing means more years to add to your life and less activity. For others it means more medication and less hair. More wrinkles and less independence; more arthritis and less dignity; More candles, and less respect from that unruly younger generation; More… what’s that word I’m thinking of? (forgetfulness)… and what were we actually talking about?

Wisdom is supposed to come with age, but as the comedian/entertainer George Carlin once said “Age is a hell of a price to pay for wisdom”. I have to say though, that if I had ever met Mr Carlin, I would have suggested to him that I’m feeling rather ripped off!

George Carlin. Source: Thethornycroftdiatribe

Whether we like it or not, from the moment you are born, ageing is an inevitable part of our life. But this has not stopped some adventurous scientific souls from trying to understand the process, and even try to alter it in an attempt to help humans live longer.

Regardless of whether you agree with the idea of humans living longer than their specified use-by-date, some of this ageing-related research could have tremendous benefits for neurodegenerative conditions, like Parkinson’s.

What do we know about the biology of ageing?

Continue reading

Inspiration from a church in Mammoth

Last year at the Intel International Science and Engineering Fair, a young high school student named Jeremiah Pate (Image above) took first Place in his category and third prize overall in the Dudley R. Herschbach Stockholm International Youth Science Seminar Award.

This competition involved nearly seven million high school students from all over the world. And by being a winner in the competition, Jeremiah received an all expenses paid trip to attend the Nobel Prize Awards in Stockholm Sweden.

Jeremiah’s award winning project was about his efforts to find a possible cure for Parkinson’s.

In today’s post we will look at the interesting story of how Jeremiah became interested in Parkinson’s and discuss why impatience is a virtue.


Source: GooglePlay

We all like stories that involve something bold.

The moon-shot. The last stand against impossible odds. The underrated boxer beating the champ. The enthusiasts putting Gossamer satellites into space. Big-obstacle-being-overcome, that sort of stuff.

I personally really like those stories about individuals with a very specific goal and the determination to let nothing stand between them and achieving it. Those folks who are not satisfied with the status quo and want to change things for the better. Here at the SoPD, we have previously tried to highlight individuals like this within the Parkinson’s research community (for example, Dr Lysimachos Zografos and Sara (soon to be Dr) Riggare). And in keeping with that tradition, today’s post is about a similar individual.

His name is Jeremiah.

And the story begins at the First Baptist Church in Mammoth, Arizona.

Continue reading

When GCase is away, the GSLs will play

 

 

New research published in the last week provides further experimental support for numerous clinical trials currently being conducted, including one by the biotech company Sanofi Genzyme.

Researchers have demonstrated that tiny proteins which usually reside on the outer wall of cells could be playing an important role in the protein clustering (or aggregation) that characterises Parkinson’s

In today’s post we will look at this new research and discuss what it could mean for the on going clinical trials for Parkinson’s. 


Source: Stevedalepetworld

The proverb ‘When the cat is away, the mice will play’ has Latin origins.

Dum felis dormit, mus gaudet et exsi litantro (or ‘When the cat falls asleep, the mouse rejoices and leaps from the hole’)

It was also used in the early fourteenth century by the French: Ou chat na rat regne (‘Where there is no cat, the rat is king’).

And then Will Shakespeare used it in Henry the Fifth(1599), Act I, Scene II:

Westmoreland, speaking with King Henry V, Gloucester, Bedford, Exeter and Warwick
“But there’s a saying very old and true,
‘If that you will France win,
Then with Scotland first begin:’
For once the eagle England being in prey,
To her unguarded nest the weasel Scot
Comes sneaking and so sucks her princely eggs,
Playing the mouse in absence of the cat,
To tear and havoc more than she can eat”

The phrase first appears in its modern form in the United States in the literary and political magazine The Port folio in 1802 (2; 323):

Interesting. But what does any of this have to do with Parkinson’s?

Continue reading

The anti-depressing research of antidepressants

Antidepressants are an important class of drugs in modern medicine, providing people with relief from the crippling effects of depression.

Recently, research has suggested that some of these drugs may also provide benefits to people suffering from Parkinson’s disease. But by saying this we are not talking about the depression that can sometimes be associated with this condition.

This new research suggests anti-depressants are actual providing neuroprotective benefits.

In today’s post we will discuss depression and its treatment, outline the recent research, and look at whether antidepressants could be useful for people with Parkinson’s disease.


Source: NatureWorldNews

It is estimated that 30 to 40% of people with Parkinson’s disease will suffer from some form of depression during the course of the condition, with 17% demonstrating major depression and 22% having minor depression (Click here to read more on this).

This is a very important issue for the Parkinson’s community.

Depression in Parkinson’s disease is associated with a variety of poor outcomes not only for the individuals, but also for their families/carers. These outcomes can include greater disability, less ability to care for oneself, faster disease progression, reduced cognitive performance, reduced adherence to treatment, worsening quality of life, and increased mortality. All of which causes higher levels of caregiver distress for those supporting the affected individual (Click here to read more about the impact of depression in early Parkinson’s).

What is depression?

Wikipedia defines depression as a “state of low mood and aversion to activity that can affect a person’s thoughts, behaviour, feelings, and sense of well-being” (Source). It is a common mental state that causes people to experience loss of interest or pleasure, feelings of guilt or low self-worth, disturbed sleep or appetite, low energy, and poor concentration.

Importantly, depression can vary significantly in severity, from simply causing a sense of melancholy to confining people to their beds.

Source: Prevention

What causes depression?

Continue reading

Are Lewy bodies fake news?

One of the cardinal features of the Parkinsonian brain are dense, circular clusters of protein that we call ‘Lewy bodies’

But what exactly are these Lewy bodies?

How do they form?

And what function do they serve?

More importantly: Are they part of the problem – helping to cause of Parkinson’s? Or are they a desperate attempt by a sick cell to save itself?

In today’s post, we will have a look at new research that makes a very close inspection of Lewy bodies and finds some interesting new details that might tell us something about Parkinson’s.


Neuropathologists conducting a gross examination of a brain. Source: NBC

A definitive diagnosis of Parkinson’s disease can only be made at the postmortem stage with an examination of the brain. Until that moment, all cases of Parkinson’s disease are ‘suspected’.

When a neuropathologist makes an examination of the brain of a person who passed away with the clinical features of Parkinson’s, there are two characteristic hallmarks that they will be looking for in order to provide a final diagnosis of the condition:

1.  The loss of specific populations of cells in the brain, such as the dopamine producing neurons in a region called the substantia nigra, which lies in an area called the midbrain (at the base of the brain/top of the brain stem).

d1ea3d21c36935b85043b3b53f2edb1f87ab7fa6

The dark pigmented dopamine neurons in the substantia nigra are reduced in the Parkinson’s disease brain (right). Source:Memorangapp

2.  Dense, circular clusters (or aggregates) of protein within cells, which are called Lewy bodies.

shutterstock_227273575

A cartoon of a neuron, with the Lewy body indicated within the cell body. Source: Alzheimer’s news

What is a Lewy body?

A Lewy body is referred to as a cellular inclusion (that is, ‘a thing that is included within a whole’), as they are almost always found inside the cell body. They generally measure between 5–25 microns in diameter (5 microns is 0.005 mm) thus they are tiny, but when compared to the neuron within which they reside they are rather large (neurons usually measures 40-100 microns in diameter).

A photo of a Lewy body inside of a neuron. Source: Neuropathology-web

How do Lewy bodies form? And what is their function?

The short answer to these questions is:

Source: Wellbeing365

The longer answer is: Our understanding of how Lewy bodies are formed – and their actual role in neurodegenerative conditions like Parkinson’s – is extremely limited. No one has ever observed one forming. Lewy bodies are very difficult to generate in the lab under experimental conditions. And as for their function, this is the source of much guess work and serious debate (we’ll come back to this topic later in this post).

Ok, but what are Lewy bodies actually made of?

Continue reading

The TAU of Parkinson’s

Here at the SoPD, we regularly talk about the ‘bad boy’ of Parkinson’s disease – a protein called Alpha Synuclein.

Twenty years ago this year, genetic variations were identified in the alpha synuclein gene that increase one’s risk of developing Parkinson’s. In addition, alpha synuclein protein was found to be present in the Lewy bodies that are found in the brains of people with Parkinson’s. Subsequently, alpha synuclein has been widely considered to be the villain in this neurodegenerative condition and it has received a lot of attention from the Parkinson’s research community.

But it is not the only protein that may be playing a role in Parkinson’s.

Today’s post is all about TAU.


Source: Wallpaperswide

I recently informed my wife that I was thinking of converting to Taoism.

She met this declaration with more of a smile than a look of shock. And I was expecting the latter, as shifting from apatheism to any form of religious belief is a bit of a leap you will appreciate.

When asked to explain myself, I suggested to her that I wanted to explore the mindfulness of what was being proposed by Lao Tzu (the supposed author of the Tao Te Ching – the founding document of Taoism).

This answer also drew a smile from her (no doubt she was thinking that Simon has done a bit of homework to make himself sound like he knows what he was talking about).

But I am genuinely curious about Taoism.

Most religions teach a philosophy and dogma which in effect defines a person. Taoism – which dates from the 4th century BCE – flips this concept on its head. It starts by teaching a single idea: The Tao (or “the way”) is indefinable. And then it follows up by suggesting that each person should discover the Tao on their own terms. Given that most people would prefer more concrete definitions in their own lives, I can appreciate that a lot of folks won’t go in for this approach.

Personally speaking, I quite like the idea that the Tao is the only principle and everything else is a just manifestation of it.

According to Taoism, salvation comes from just one source: Following the Tao.

Source: Wikipedia

Oh and don’t worry, I’m not going to force any more philosophical mumbo jumbo on you – Taoism is just an idea I am exploring as part of a terribly clichéd middle-life crisis I’m working my way through (my wife’s actual response to all of this was “why can’t you just be normal and go buy a motor bike or something?”).

My reason for sharing this, however, is that this introduction provides a convenient segway to what we are actually going to talk about in this post.

You see, some Parkinson’s researchers are thinking that salvation from neurodegenerative conditions like Parkinson’s will come from just one source: Following the TAU.

What is TAU?

Continue reading