Tagged: serotonin

O’mice an’ men – gang aft agley

This week a group of scientists have published an article which indicates differences between mice and human beings, calling into question the use of these mice in Parkinson’s disease research.

The results could explain way mice do not get Parkinson’s disease, and they may also partly explain why humans do.

In today’s post we will outline the new research, discuss the results, and look at whether Levodopa treatment may (or may not) be a problem.


The humble lab mouse. Source: PBS

Much of our understanding of modern biology is derived from the “lower organisms”.

From yeast to snails (there is a post coming shortly on a snail model of Parkinson’s disease – I kid you not) and from flies to mice, a great deal of what we know about basic biology comes from experimentation on these creatures. So much in fact that many of our current ideas about neurodegenerative diseases result from modelling those conditions in these creatures.

Now say what you like about the ethics and morality of this approach, these organisms have been useful until now. And I say ‘until now’ because an interesting research report was released this week which may call into question much of the knowledge we have from the modelling of Parkinson’s disease is these creatures.

You see, here’s the thing: Flies don’t naturally develop Parkinson’s disease.

Nor do mice. Or snails.

Or yeast for that matter.

So we are forcing a very un-natural state upon the biology of these creatures and then studying the response/effect. Which could be giving us strange results that don’t necessarily apply to human beings. And this may explain our long history of failed clinical trials.

We work with the best tools we have, but it those tools are flawed…

What did the new research report find?

This is the study:


Title: Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease
Authors: Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC, Jeon S, Santos DP, Blanz J, Obermaier CD, Strojny C, Savas JN, Kiskinis E, Zhuang X, Krüger R, Surmeier DJ, Krainc D
Journal: Science, 07 Sept 2017 – Early online publication
PMID: 28882997

The researchers who conducted this study began by growing dopamine neurons – a type of cell badly affected by Parkinson’s disease – from induced pluripotent stem (IPS) cells.

What are induced pluripotent stem cells?

Continue reading

Advertisements

The Agony and the Ecstasy

ecstasy

The contents of today’s post may not be appropriate for all readers. An illegal and potentially damaging drug is discussed. Please proceed with caution. 

3,4-Methylenedioxymethamphetamine (or MDMA) is more commonly known as Ecstasy, ‘Molly’ or simply ‘E’. It is a controlled Class A, synthetic, psychoactive drug that was very popular with the New York and London club scene of the 1980-90s.

It is chemically similar to both stimulants and hallucinogens, producing a feeling of increased energy, pleasure, emotional warmth, but also distorted sensory perception. 

Another curious effect of the drug: it has the ability to reduce dyskinesias – the involuntary movements associated with long-term Levodopa treatment.

In today’s post, we will (try not to get ourselves into trouble by) discussing the biology of MDMA, the research that has been done on it with regards to Parkinson’s disease, and what that may tell us about dyskinesias.


Carwash-image-07

Good times. Source: Carwash

You may have heard this story before.

It is about a stuntman.

His name is Tim Lawrence, and in 1994 – at 34 years of age – he was diagnosed with Parkinson’s disease.

_1169980_tim_lawrence_ecstasy300

Tim Lawrence. Source: BBC

Following the diagnosis, Tim was placed on the standard treatment for Parkinson’s disease: Levodopa. But after just a few years of taking this treatment, he began to develop dyskinesias.

Dyskinesias are involuntary movements that can develop after regular long-term use of Levodopa. There are currently few clinically approved medications for treating this debilitating side effect of Levodopa treatment. I have previously discussed dyskinesias (Click here and here for more of an explanation about them).

As his dyskinesias progressively got worse, Tim was offered and turned down deep brain stimulation as a treatment option. But by 1997, Tim says that he spent most of his waking hours with “twitching, spasmodic, involuntary, sometimes violent movements of the body’s muscles, over which the brain has absolutely no control“.

And the dyskinesias continued to get worse…

…until one night while he was out at a night club, something amazing happened:

Standing in the club with thumping music claiming the air, I was suddenly aware that I was totally still. I felt and looked completely normal. No big deal for you, perhaps, but, for me, it was a revelation” he said.

His dyskinesias had stopped.

Continue reading