Can shaking hands fix shaking hands?

# # # #

Novel treatments for Parkinson’s are being proposed on a regular basis, and I really like the way many are based on some pretty left field ideas (light buckets, I’m thinking of you here). Thinking outside the box is important to innovation and progress.

And some of those unconventional approaches are backed not only by historical precedent, but also scientific research. 

Recently, researchers at Stanford University have presented just such an idea: It involves vibrating gloves. 

In today’s post, we will explore what research has been conducted on vibrating hands in Parkinson’s, and discuss what comes next.

# # # #


Jean-Martin Charcot. Source: Wikipedia

There are few figures in the history of neurology as revered as Jean-Martin Charcot.

Widely considered the ‘Father of neurology’ and the ‘Napoleon of the neuroses‘, the importance of Charcot’s contribution to modern medicine is definitely not up for debate. One only needs to read the names of the students that he taught at the Salpêtrière Hospital (in Paris) to appreciate that everyone who became someone in the field of neurology passed through his classes.

Those names include Sigmund Freud (the founder of psychoanalysis), Joseph BabinskiPierre JanetPierre MarieAlbert LondeCharles-Joseph BouchardGeorges Gilles de la Tourette (he of Tourette syndrome), Alfred Binet (inventor of the first intelligence test), and Albert Pitres.

The mere fact that these students of Charcot all have Wikipedia pages should speak volumes to his impact on the field. Heck, even the great William James – one of the founding fathers of Psychology – travelled all the way from America just to sit in on Charcot’s classes.

Charcot was one of the most sought-after instructors in all of Europe, and he is immortalised in a painting by André Brouillet:

Une_leçon_clinique_à_la_Salpêtrière

“Une leçon clinique à la Salpêtrière“ by André Brouillet (Source: Wikipedia)

Cool. But what does monsieur Charcot have to do with Parkinson’s?

Continue reading “Can shaking hands fix shaking hands?”

The Stanford Parkinson’s Disease Plasma Study

# # # #

Researchers in California have been conducting a different kind of Parkinson’s clinical trial. Rather than testing a drug or a special diet/exercise regime, they have been giving participants in their study a regular infusion of plasma.

If you remove all of the cells from blood, the yellowish liquid that remains is called plasma. In medicine, plasma is usually used to boost a patient’s blood volume to help reduce shock. But recently researchers have been experimenting with giving older individuals infusions of plasma collected from young individuals to see if this has any beneficial effects.

A group of researchers at Stanford University have been leading a study examining the safety of infusions of plasma (collected from young people) in a cohort of individuals with Parkinson’s. This week they published the results of their study.

In today’s post, we will discuss what plasma is made of, why young plasma may help in neurodegenerative conditions, and review the results of the new study.

# # # #


Source: KhanAcademy

There are three chief components of blood:

  • Red blood cells
  • White blood cells
  • Plasma

Red blood cells carry oxygen to distant parts of the body and they also remove carbon dioxide. And by volume, the red blood cells constitute about 45% of whole blood. White blood cells are the immune cells, fighting off infections etc. And they – this may surprise you – make up only 0.7% of whole blood.

That might sound like a tiny fraction, but understand that within a single drop of blood (50 ul) there are approximately 5 million red blood cells, and 5,000 to 25,000 white blood cells.

Apologies to the squeamish. Source: Science

And in total the human body contains about 4.5 litres (or 1.2 gallons) of blood. That’s a whole lot of drops. Plenty of white blood cells to help keep us healthy.

And what about plasma?

Plasma is the stuff that all of the red and white blood cells sit in. It has a yellowish tinge to it, and it makes up the other 54.3% of whole blood.

It contains 92% water and 8% ‘other stuff’.

Apologies for the very technical term (‘other stuff’), but there is a great deal of interesting stuff in that ‘other stuff’.

What do you mean ‘interesting’?

Continue reading “The Stanford Parkinson’s Disease Plasma Study”

When miro just can’t let go

 

Stanford University researchers have recently published an interesting report in which they not only propose a novel biomarker for Parkinson’s, but also provide some compelling data for a novel therapeutic approach.

Their research focuses on a protein called Miro, which is involved in the removal of old or faulty mitochondria. Mitochondria are the power stations of each cells, providing cells with the energy they require to do what they do.

Specifically, the researchers found that Miro refuses to let go of mitochndria in people with Parkinson’s (which could act as a biomarker for the condition). They also found that pharmacologically forcing Miro to let go, resulted in neuroprotective benefits in models of Parkinson’s

In today’s post, we will discuss what Miro is, what the results of the new research suggest, and we will consider what will happen next.

 


 

Source: Amazingaccelerators

Every now and then a research report comes along and you think: “Whoa, that’s amazing!”

It a piece of work that breaks down your cynicism (which you have proudly built up over years of failed experiments) and disciplined scepticism (a critical ingredient for a career in scientific research – mantra: ‘question everything’). And for a moment you are taken in by the remarkable beauty of not just good research, but biology itself.

A couple of weeks ago, one such research report was published.

This is it here:

Title: Miro1 Marks Parkinson’s Disease Subset and Miro1 Reducer Rescues Neuron Loss in Parkinson’s Models.
Authors: Hsieh CH, Li L, Vanhauwaert R, Nguyen KT, Davis MD, Bu G, Wszolek ZK, Wang X.
Journal: Cell Metab. 2019 Sep 23. [Epub ahead of print]
PMID: 31564441

It’s a really interesting study for several reasons.

So what did they report?

Continue reading “When miro just can’t let go”

The omnigenics of Parkinson’s disease?

agarose-gel-electrophoresis-dna

One of the most common observations that people make when they attend a Parkinson’s disease support group meeting is the huge variety of symptoms between sufferers.

Some people affected by this condition are more tremor dominant, while others have more pronounced gait (or walking) issues. In addition, some people have an early onset version, while others has a very later onset. What could explain this wide range of features?

A group of Stanford researchers have recently proposed an interesting new idea regarding our understanding of genetics that could partly explain some of this variability. In todays post I speculate on whether their idea could be applied to Parkinson’s disease.


shutterstock_225119212

Source: Discover

Earlier this year an interesting study was published in the prestigious journal Nature on the topic of the genetics of height (yes height. Trust me, I’m going somewhere with this):

Nature
Title: Rare and low-frequency coding variants alter human adult height
Authors: Marouli E, Graff M, Medina-Gomez C, Lo KS, Wood AR, Kjaer TR, Fine RS, Lu Y, Schurmann C,………at least 200 additional authors have been deleted here in order to save some space…….EPIC-InterAct Consortium; CHD Exome+ Consortium; ExomeBP Consortium; T2D-Genes Consortium; GoT2D Genes Consortium; Global Lipids Genetics Consortium; ReproGen Consortium; MAGIC Investigators, Rotter JI, Boehnke M, Kathiresan S, McCarthy MI, Willer CJ, Stefansson K, Borecki IB, Liu DJ, North KE, Heard-Costa NL, Pers TH, Lindgren CM, Oxvig C, Kutalik Z, Rivadeneira F, Loos RJ, Frayling TM, Hirschhorn JN, Deloukas P, Lettre G.
Journal: Nature. 2017 Feb 9;542(7640):186-190.
PMID: 28146470

In this study, the researchers – who are part of the GIANT consortium – were analysing DNA collected from over 700,000 people and trying to determine what genetic differences could influence height.

euPZ0hG

Height is not important for music. Source: Imgur

Why study height?

Good question. There are several reasons:

Firstly, it is easy to accurately measure. Second, the researchers believed that if we can master the complex genetics of something simple like height maybe what we learn will give us a blueprint for how we should study more complex medical disorders that have thus far eluded our complete understanding.

Continue reading “The omnigenics of Parkinson’s disease?”