CPTX: Gluing the brain back together

# # # #

Current clinical efforts at restorative medicine for neurodegeneration are still largely focused on stem cell and neurotrophic factor-based methods. Novel techniques are being preclinically proposed however, and some of them employ some radically different approaches.

An international group of researchers have recently published a report describing a means of repairing the damaged central nervous system that involves ‘gluing’ neurons together via an artificial protein.

They called this new method CPTX.

In today’s post, we will explore what this artificial protein does, what was reported in the new study, and consider how this could potentially be used for Parkinson’s.

# # # #

Source: Howtogeek

Earlier in the year I wrote a post called the 2020 wish list, where I discussed some hopes for Parkinson’s research this year. Despite everything that 2020 (annus horribilis) has thrown at us, there have been significant developments regarding Parkinson’s research and some of those wishes.

One of those hopes was the announcement of new and innovative methods for restorative techniques for Parkinson’s. At present, all of the restorative approaches in clinical trial for Parkinson’s are focused on stem cell transplantation (Click here to read a recent SoPD post describing an example of this), and it would be good to broaden the range of approaches being tested.

As a result of this particular wish, a theme here on the SoPD this year has been to write posts highlighting new restorative research as it has been published (Click here, here and here to read some examples).

In today’s post, we are going to continue that theme with an extremely radical bit of research that utterly boggled my mind.

Me after reading this report. Source: 1zoom

Be warned, this is very futuristic, blue sky, “way out there on the horizon”-kind of stuff.

But when I read this report in August, I was left stunned… and rather excited by the potential possibilities.

Sounds interesting, what was the research report about?

Continue reading “CPTX: Gluing the brain back together”

A case for chondroitinase?


Given that the condition is defined by the loss of specific types of neurons in the brain, any future therapy for Parkinson’s should include some form of restorative treatment. Much of the current clinical research exploring restoration in Parkinson’s is focused on cell transplantation – replacing the cells that have been lost in the brain.

But the adult brain is very different to the developing brain. While youngsters have lots of nurturing and supportive protein floating around – encouraging plasticity and survival – once we reach adulthood, our brains appear to be full of inhibitory molecules that reduce rejuvenation in the case of injury.

What if we could re-introduce some of those supportive factors and remove the inhibitory proteins? Could this help with restorative therapies for Parkinson’s?

In today’s post, we will look at new research exploring how we may be able to reduce some of those inhibitory factors and provide a more supportive environment for restorative therapy in Parkinson’s.


Source: restorativejustice

As we regularly state here on the SoPD, any ‘curative therapy’ for Parkinson’s is going to require three core components:

  1. A disease halting mechanism
  2. A neuroprotective agent
  3. Some form of restorative therapy

Now, the bad news is (as far as I am aware) there is no single treatment currently available (or being tested) that can do all three of these things. By this I mean that there is no disease halting mechanism therapy that can also replace lost brain cells. Nor is there a restorative therapy that stop the progression of the condition.

That statement can obviously be read as bad news, but it shouldn’t.

Let me explain:

A curative therapy for Parkinson’s is going to need to be personalised to each individual, with varying levels of each of the three component listed above. It will be a multi-modal approach designed for each individual’s needs.

Making things personal. Source: Flickr

By this I mean, there is a great deal of heterogeneity (or variability) between individuals with regards to their symptoms and the amount of time that they have had the condition. Some folks are more tremor dominant, while others do not experience tremor at all. Likewise, some individuals have only just been diagnosed, while others have lived with the condition for many years.

The treatment needs of each individual will be different, and thus what we will require is different amounts of the disease halting mechanism component, the neuroprotection component, and the restorative therapy components for each affected person.

In today’s post we are going to explore some alternative approaches being tested for restorative therapy.

What do you mean ‘alternative’?

Continue reading “A case for chondroitinase?”

Keep an eye on mild TBI

Last week one of the most comprehensive analyses assessing the risk of developing Parkinson’s following mild traumatic brain injury (or TBI) was published.

Using data collected from US military veterans, the study concluded that mild TBI was associated with a 56% increased risk of developing Parkinson’s.

In today’s post, we will review the study, discuss what TBI means, and consider what implications this study could have for the Parkinson’s community.

Source: Jamesriverarmory

At a recent research conference, a young PhD student was looking at me from across the room.

Finally, she walked across to me and asked:

“Excuse me. Are you the goat guy?”

I smiled.

It had been a while since anyone had asked me this.

“Yes,” I replied, “I am the goat guy”

Let me explain:

Continue reading “Keep an eye on mild TBI”

Traumatic brain injury and Parkinson’s disease – an association


A new study has found traumatic brain injury with loss of consciousness is associated with the risk of Parkinson’s disease, but (interestingly) not Alzheimer’s disease. In this post we will review the study and its findings, before considering the implications of the results.


Image sourced from GQ

There has been a lot of talk on the interweb and various media outlets recently about the long term consequences of head injuries associated with physical sports like boxing, rugby, ice hockey and American football (click here for more on this).

Of particular concern is when individuals lose consciousness at the time of the head injury, which has been associated with worse outcomes than simply suffering a bang on the head.

A group of American researchers recently decided to assess whether there was any association between traumatic head injury with loss of consciousness and the increased risk for Alzheimer’s disease.

What they found may have profound implications for Parkinson’s disease.


Title: Association of Traumatic Brain Injury With Late-Life Neurodegenerative Conditions and Neuropathologic Findings.
Authors: Crane PK, Gibbons LE, Dams-O’Connor K, Trittschuh E, Leverenz JB, Keene CD, Sonnen J, Montine TJ, Bennett DA, Leurgans S, Schneider JA, Larson EB.
Journal: JAMA Neurol. 2016 Jul 11. doi: 10.1001/jamaneurol.2016.1948.
PMID: 27400367       (This study is OPEN ACCESS if you would like to read it)

The researchers collected the results of 3 large studies, collectively involving 7130 participants who had head injury data (2879 men and 4251 women; average age of 79.9 years). Of these 845 had suffered traumatic brain injuries with loss of consciousness for at least 1 hour. Interestingly, the researchers found no statistically significant association between traumatic brain injuries with loss of consciousness and risk of Alzheimer’s disease.

Next they looked at Parkinson’s disease and found that people who suffered traumatic brain injuries with loss of consciousness of more than 1 hour had a statistically significant increase in developing Parkinson’s disease (2-3 times more than normal controls).

Of the 7130 participants in the study, postmortem autopsy analysis reports were available for 1589 of the subjects. The researchers looked for the neuropathological hallmarks of Parkinson’s disease, called Lewy bodies, and they found no correlation between people who suffered traumatic brain injuries with loss of consciousness of less than 1 hour and the presence of Lewy bodies. When they looked in the brains of people who suffered traumatic brain injuries with loss of consciousness of more than 1 hour, they did find a correlation. And importantly these neuropathological events were not associated with genetic mutations.

So what does it all mean? 


The results indicate that traumatic brain injuries with loss of consciousness of more than 1 hour could significantly increase a person’s risk of Parkinson’s disease. The crucial  detail in the results is the ‘loss of consciousness of more than 1 hour’. Traumatic head injury can often result in disruption to the blood-brain-barrier (the protective film surrounding the brain), which may result in certain pathogens entering the brain. So the more severe the injury, perhaps the longer the barrier is disrupted. Why this event may relate solely to Parkinson’s disease and not Alzheimer’s disease, however, remains to be determined.

It would be interesting to assess how this finding relates to the greater Parkinson’s community. That is to say, determine how many of the people with Parkinson’s disease have a head injury with loss of consciousness in their past medical records?

Reading this study, one cannot help thinking of the recent passing of Boxing great Muhammad Ali. Ali died this year having spent the last third of his life living with Parkinson’s disease. Many boxing careers have probably involved one or two severe head injuries with loss of consciousness, so why are there not more cases of Parkinson’s disease in the boxing community? Many retired boxers suffer from what is called Dementia pugilistica – a neurodegenerative condition with Alzheimer’s-like dementia. Some estimates suggest that 15-20% of boxers may be affected, with symptoms usually starting 12-16 years after the start of a career in boxing. Some very famous boxers have been diagnosed with this condition, including world champions Floyd Patterson, Joe Louis, Sugar Ray Robinson and boxer/coach Freddie Roach.

The difference between the results of today’s study and dementia pugilistica may lie in the repeated nature of the injuries in boxers and the length of time individuals were unconscious. It will be interesting to see what becomes of this research.



The banner for today’s post was sourced from the Huffington Post