Tagged: monitoring

Monitoring Parkinson’s: Doctor, my glasses are listening to us

 

An important aspect of developing new potentially ‘curative’ treatments for Parkinson’s is our ability to accurately test and evaluate them.

Current methods of assessing Parkinson’s are basic at best (UPDRS and brain imaging), and if we do not improve our ability to measure Parkinson’s, many of those novel treatments will fail the clinical trial process and forever remain just “potentially” curative.

Glasses are a wearable device that the majority of us take for granted. But two technology companies have announced that they are partnering up to focus their combined efforts on making a pair of glasses that could help improve the lives of people with Parkinson’s. 

One company focuses on tracking facial expressions, while the other analyses audio. 

In today’s post, we will look at how these technologies could be applied to Parkinson’s, and discuss what the companies have planned.

 


Looking good. Source: 1zoom

An interesting fact:

Approximately 60% of western populations wear glasses, contact lenses or use some other reading/visual aid (Source). And as we age, this percentage only increases – with the over 75 year olds representing a solid collection within the bespectacled crowd (see graph below).

More women than men wear glasses. Source: CBS

I am in the majority.

But mostly for aesthetic reasons (they make me look smarter than I actually am).

Ok, but what does this have to do with Parkinson’s?

Continue reading

Monitoring Parkinson’s: Putting your finger on it

An important aspect of developing new potentially ‘curative’ treatments for Parkinson’s is our ability to accurately test and evaluate them. Our methods of assessing Parkinson’s at the moment are basic at best (UPDRS and brain imaging), and if we do not improve our ability to measure Parkinson’s, many of those novel treatments will fail clinical testing and forever remain just  “potentially” curative.

Researchers from Madrid (Spain) and the Massachusetts Institute of Technology have developed new technology that could aid in better measuring and monitoring of Parkinson’s over time.

And it is as easy as typing on your keyboard or sending a text message.

In today’s post, we will look at how the monitoring of typing could provide a useful ‘real world’ method of assessing people with Parkinson’s over time.


Measuring stuff. Source: Medium

When we think about new technology for the monitoring of Parkinson’s, we all too often think of a device that is strapped on to the body in order to measure tremor or speed of movement (Click here to read a previous post on wearable tech).

Or perhaps a smart phone app that has simple tests on it that individuals can use to assess themselves over time (Click here to read a previous post on this topic).

One of the issues with these approaches, however, is ‘adherence‘ – these devices require effort from the individual being assessed (they have to strap on the motion sensing device or remember to complete the task on the smart phone). And after the first week or so of using the device or the app, the novelty wears off and recordings may be less frequent.

Many of these methods are also slightly ‘unnatural‘, and they may deviate the individual from their normal way of life. For example, wearable tech is amazing, but the individual may find it uncomfortable to wear all the time or may alter aspects of their behaviour to better suit the wearing of the device.

Source: Cloudtweaks

A better approach would be to have methods of monitoring that require no effort from the individual. Tools that silently and seamlessly slip into the background of their lives and monitor continuously – the individual completely forgets about them, which provides a more unbiased assessment.

We have previously discussed some examples of more ‘real world/natural’ approaches (such as smart pills – Click here to read that post – and also with regards to sleep monitoring – Click here to read that post), and today we will explore another example: keyboard stroke monitoring.

What is keyboard stroke monitoring?

Continue reading

Monitoring Parkinson’s: Let’s just sleep on it

Regular readers will be aware that here at the SoPD, we are on a mission to change the way we clinically test drugs (Click here for the most recent rant on this topic). 

We have a lot of interesting drugs waiting in the pipeline to be clinically tested and an eager (read: desperate) population of individuals affected by Parkinson’s, but we are missing one critical part of the equation: better tools of assessment.

How can we determine whether a drug is actually working or not? And how can we better monitor people over time on said drug?

Our current methods assessing individuals with Parkinson’s rely heavily on clinical rating scales and brain imaging. These are basic tools at best, conducted episodically (annually in general, or once every 2-6 months during a clinical trial), and provide little in the way of useful objective data (on an individual basis).

In today’s post, we will look at a single aspect of Parkinson’s – sleep – and try to nut-out a better/more informative method of assessing it over time.


The Bluesky project. Source: Mirror

Last week tech industry giants Pfizer and IBM made an big announcement.

It was news that I have been quietly waiting to hear for some time.

It related to their “BlueSky Project” – a collaboration between the two companies to provide better methods of assessment/monitoring of Parkinson’s.

 

The two companies announced that they are now ready to start accepting the first participants for a new clinical trial.

And it is a really intriguing study for one simple reason:

The entire trial will take place inside one house.

Continue reading

Objective measures: Getting smart about pills

There has been a lot of discussion on this site (and elsewhere on the web) regarding the need for more objective systems of measuring Parkinson’s – particularly in the setting of clinical trials.

Yes, subjective reports of patient experience are important, but they can easily be biased by ‘placebo responses’.

Thus, measures that are beyond the clinical trial participants conscious control – and focused on biological outcomes – are needed. 

In today’s post, we will consider one possible approach: Smart pills. We will discuss what they are, how they work, and how they could be applied to Parkinson’s research.


Source: Chicagotribune

In order to encourage a growing discussion regarding objective measures of Parkinson’s (and to follow up on previous rants – Click here and here for examples), I have decided to regularly (once a month) highlight new technologies that could provide the sort of unbiased methods of data collection that are required for assessing whether a treatment is having an impact on Parkinson’s.

Today, we will look at smart pills.

What is a smart pill?

Continue reading

Clinical trials: The Power of One

As the age of personalised medicine approaches, innovative researchers are rethinking the way we conduct clinical studies. “Rethinking” in radical ways – think: individualised clinical trials! 

One obvious question is: Can you really conduct a clinical trial involving just one participant?

In this post, we will look at some of the ideas and evaluate the strengths and weaknesses these approaches.


A Nobel prize medal. Source: Motley

In the annals of Nobel prize history, there are a couple winners that stands out for their shear….um, well,…audacity.

One example in particular, was the award given to physician Dr Werner Forssmann. In 1956, Andre Cournand, Dickinson Richards and Forssmann were awarded the Nobel Prize in Physiology or Medicine “for their discoveries concerning heart catheterisation and pathological changes in the circulatory system”. Forssmann was responsible for the first part (heart catheterisation).

Source: Nobelprize

In 1929, at the age of 25, Forssmann performed the first human cardiac catheterisation – that is a procedure that involves inserting a thin, flexible tube directly into the heart via an artery (usually in the arm, leg or neck). It is a very common procedure performed on a daily basis in any hospital today. But in 1929, it was revolutionary. And the audacious aspect of this feat was that Forssmann performed the procedure on himself!

And if you think that is too crazy to be true, please read on.

But be warned: this particular story gets really bonkers.

Continue reading

Self monitoring: there’s something in your eye

Self tracking/monitoring has become a popular habit for the general population with the introduction of products like Fitbit and Apple watch.

It is particularly useful for groups like the Parkinson’s community though, who are tired of having just one hour per year of assessments with their neurologist.

In today’s post, we will look at some new tracking/monitoring technologies that are being developed that could have important implications for not only how we assess Parkinson’s disease, but also for how we treat it.



Homo deus. Source: RealClearLife

I have recently finished reading ‘Homo Deus‘ by Yuval Noah Harari – the excellent follow-up to his previous book ‘Sapiens‘ (which is an absolute MUST READ!). The more recent book provides an utterly fascinating explanation of how we have come to be where we will be in the future (if that makes any sense).

In the final few chapters, Harari discusses many of the technologies that are currently under development which will change the world we live in (with a lot of interesting and cautionary sections on artificial intelligence – the machines that will know vastly more about us than we know about ourselves).

Of particular interest in this part of the book was a section on the Google-Novartis smart lens.

What is the Google-Novartis smart lens?

In 2014, a company called Alcon, which is a wholly owned subsidiary of Novartis formed a collaboration with the Google offshoot Verily Life Sciences that would focus on developing smart lens.

The initial project is rather ambitious: develop and take to the clinic a glucose-sensing contact lens for people with diabetes. The idea has been particularly championed by Google founder Sergey Brin (a prominent figure within the Parkinson’s community with his significant contributions to Parkinson’s research each year).

People with diabetes have to keep pricking their finger over the course of a day in order to check the levels of insulin in their blood. A less laborious approach would be welcomed by the diabetic world (an estimated 415 million people living with diabetes in the world).

This is what the lens may eventually look like:

Continue reading