ADepTing to the UCB-Novartis deal

# # # #

Alpha synuclein has long been viewed at “Public enemy #1” by the Parkinson’s research community. This sticky, abundant protein starts to cluster (or aggregate) in Parkinson’s.

There have been several attempts to reduce levels of the protein floating around outside of cells (using “immunotherapy” approaches)

But now clinical research is ramping up to determine if reducing aggregated alpha synuclein levels in the brain could help to slow/stop the progression of the condition.

In today’s post, we will look at three different lines of clinical research focused on small molecule inhibitors of alpha synuclein aggregation. 

# # # #


When someone mentions the pharmaceutical firm Novartis, it feels like the company has been around forever, but it is actually not that old.

It was created in March 1996 via the merger of two Swiss companies: Ciba-Geigy and Sandoz. The roots of those companies can be traced back more than 250 years, but the combined entity is still a spring chicken compared to many of its major competitors.

The name Novartis results from the combination of two words “Nova Artes”, which means new art and innovation in simple forms, but there is little in what the company does that is ‘simple’. A good example of this was their block buster cancer drug Gleevec/Glivec (imatinib) which was developed by careful “rational drug design” for very specific types of cancer.

Source: NCBI

The reputation for Swiss precision seems to flow through this company and they are always making very carefully placed bets.

Which makes their news this week rather interesting.

What news did they have?

Continue reading “ADepTing to the UCB-Novartis deal”

Getting expansive about treg cells

# # # #

In cancer research, scientists have devised methods of extracting samples of blood from patients and then growing certain populations of cells in those samples. The isolated subpopulations  of cells can then be manipulated in cell culture, before they are then injected back into the patient.

This is a form of immunotherapy – artificially boosting the immune system to target specific disease-related pathology in the body.

Recently, researchers have been exploring this alternative form of immunotherapy in the context of Parkinson’s… with some interesting results.

In today’s post, we will look at review this new research and consider the implications in terms of future therapies for Parkinson’s.

# # # #


Source: lls

Some time back, a friend in oncology (cancer) research said to me that “we are about to cure all blood cancers“. It should be noted that this optimistic friend is a “glass is completely full” type.

How so?” I asked.

CAR T-cell technology is amazing. Really coming into bloom” they responded.

What is CAR T-cell technology?” I asked.

They explained that it is a kind of immunotherapy – a method of boosting the immune system to help us fight disease.

CAR T-cell approaches basically involve removing a sample of blood from a person with cancer, expanding specific populations of those cells in cell culture, genetically manipulating those cells, and then re-introducing them into the body. They also explained that there were lots of different versions of CAR T-cells, with all kinds of potential applications.

Cool” I said, sounding enthusiastic, but only half understanding what they were saying. My friend is an immunologist, and my summary here is a one sentence version of a 30 minute sermon.

But they are correct.

CAR T-cell technology is achieving really impressive results in cancer (Click here and here to read more about this topic).

Interesting. What does this have to do with Parkinson’s?

Continue reading “Getting expansive about treg cells”

Does immunotherapy need therapy?

# # # #

Over the last decade, a large number of clinical trials involving immunotherapy have been conducted in the field of Alzheimer’s research. The overall success rate of these studies has not been encouraging.

Immunotherapy involves artificially boosting the immune system so that it targets of particular pathogen – like a rogue protein in the case of Alzheimer’s – and clears it from the body.

Recently, preclinical research has pointed to several possible reasons why this approach may be struggling in the clinical trials, and potential solutions that could be explored.

In today’s post, we will review two research reports and consider how this applies to Parkinson’s research.

# # # #


Immune cells (blue) checking out a suspect cell. Source: Lindau-nobel

Immunotherapy is a method of boosting the body’s immune system to better fight a particular disease. Think of it as training the immune cells in your body to target a particular protein.

The approach involves utilising the immune system of your body, and artificially altering it to target a particular protein/disease-causing agent that is not usually recognised as a pathogen (a disease causing agent).

It is truly remarkable that we have gone from painting on cave walls to flying helicopters on Mars and therapeutically manipulating our body’s primary defense system.

Immunotherapy is potentially a very powerful method for treating a wide range of medical conditions. To date, the majority of the research on immunotherapies have focused on the field of oncology (‘cancer’). Numerous methods of immunotherapy have been developed for cancer and are currently being tested in the clinic (Click here to read more about immunotherapy for cancer).

Many approaches to immunotherapy against cancer. Source: Bloomberg

Immunotherapy has also been tested in neurodegenerative conditions, like Alzheimer’s and more recently Parkinson’s. It typically involves researchers carefully designing antibodies that target a rogue protein (like beta amyloid in Alzheimer’s and alpha synuclein in Parkinson’s) which begin to cluster together, and this aggregation of protein is believed to lead to neurotoxicity.

Source: RND

What are antibodies?

Continue reading “Does immunotherapy need therapy?”

The PASADENA study announcement (part 2)

# # # #

In April of this year it was announced that the closely watched Phase II PASADENA clinical trial had not to met its primary objective. This was a large clinical evaluation of an immunotherapy approach (called prasinezumab) for disease modification in Parkinson’s. 

At the time of the announcement, it was indicated that the researchers who conducted the study had seen “signals of efficacy” in the data.

This week the results of the study were presented at an international conference and it was reported that prasinezumab “significantly reduced decline in motor function by 35% (pooled dose levels) vs. placebo after one year of treatment“.

In today’s post, we will discuss what the PASADENA study was, review the results that have been released, and discuss what might happen next.

# # # #


At 7am (just prior to the opening of the Swiss Stock Exchange) on Wednesday 22nd April 2020, the pharmaceutical company Roche published its sales results for the 1st Quarter. The financial report looked good, particularly considering the current COVID-19 economic climate, but there was one sentence on page 133 of the results (highlighted below) that grabbed a lot of attention:

From page 133. Source: Roche

For those of you (like myself) who struggle with fine print, the sentence reads:

Study did not meet its primary objective, but showed signals of efficacy

This was how the Parkinson’s community found out about the top line result of the closely followed Phase II PASADENA study evaluating the immunotherapy treatment prasinezumab in individuals recently diagnosed with Parkinson’s.

Many within the Parkinson’s community were basically:

Yet another negative clinical trial result.

But then, later that same day, the biotech firm Prothena – which developed prasinezumab and is partnered with Roche in the clinical testing – kindly provided a press release.

And in that document, the company repeated that prasinezumab “showed signals of efficacy, but importantly: “These signals were observed on multiple prespecified secondary and exploratory clinical endpoints“.

And then the Parkinson’s community was like:

This week we found out more about those “signals of efficacy” and the results of the PASADENA study, and they look interesting.

What do the results show?

Continue reading “The PASADENA study announcement (part 2)”

The hunt for a vaccine

# # # #

This week, the biotech firm AFFiRiS published the long awaited results of their Phase 1 clinical trial evaluating a vaccine for Parkinson’s. The vaccine – called PD01A – targets a protein that clumps/aggregates together in certain neurons in the brains of people with Parkinson’s.

The multi-year study suggests that the treatment is safe and tolerated. In addition, it causes the immune system to generate antibodies that target the aggregated form of alpha synuclein.

And while it must be remembered that this is a small, open-label study, there are some intriguing statements made in the report.

In today’s post, we will discuss what PD01A is, review the results of the clinical study, and explore what happens next.

# # # #


Source: NHI

As the world awaits the development of a vaccine that will combat COVID-19, the neurodegenerative research community has quietly been watching a biotech company in Austria that has been developing a vaccine of a different sort: A vaccine for Parkinson’s.

The company is called AFFiRiS:

Source: Twitter

And this week they published the results of their Phase 1 safety/tolerability clinical trial of their immunotherapy treatment (PD01A) that they are testing in people with recently diagnosed Parkinson’s.

What is immunotherapy?

Continue reading “The hunt for a vaccine”

The Pasadena study announcement

# # # #

This week the outcome of an ongoing Parkinson’s clinical trial was announced.

Data collected during Part 1 of the ongoing Phase 2 PASADENA alpha synuclein immunotherapy study for Parkinson’s apparently suggests that the treatment – called prasinezumab – has not achieved it’s primary endpoint (the pre-determined measure of whether the agent has an effect in slowing Parkinson’s progression – in this case the UPDRS clinical rating scale).

But, intriguingly, the announcement did suggest ‘signals of efficacy‘ in secondary and exploratory measures.

In today’s post, we will discuss what immunotherapy is, what we know about the PASADENA study, and why no one should be over reacting to this announcement.

# # # #


At 7am on Wednesday, April 22nd, 2020, the pharmaceutical company Roche published its sales results for the 1st Quarter. This was just prior to the opening of the Swiss Stock Exchange. The financial report looked very good, particularly considering the current COVID-19 economic climate.

There was, however, one sentence on page 133 of the results that grabbed some attention:

Source: Roche

For those of you (like myself) who struggle with fine print, the sentence reads:

Study did not meet its primary objective, but showed signals of efficacy

This was how the pharmaceutical giant announced the top line result of the ongoing Phase II PASADENA study evaluating the immunotherapy treatment prasinezumab in recently diagnosed individuals with Parkinson’s (listed on the Clinicaltrials.gov as NCT03100149).

At the time of publishing this SoPD post, Roche are yet to provide any further information (press release, announcement, memo, tweet, etc) regarding the results of the study.

Thankfully, a smaller biotech firm called Prothena – which is also involved in the development of the agent being tested in the Pasadena study – has kindly provided a few more details regarding these results.

I usually don’t like discussing clinical trial results on the SoPD until the final report is published, but in this circumstance I will make an exception.

In today’s post we will discuss what details have been shared in the Prothena press release regarding the Prasinezumab clinical trial in Parkinson’s (Click here to read the press release).

What is Prasinezumab?

Continue reading “The Pasadena study announcement”

That time APOE met Alpha Syn

  

Recently two independent research groups published scientific papers providing evidence that a genetic variation associated with Alzheimer’s may also be affecting the severity of pathology in Parkinson’s.

The genetic variation associated with Alzheimer’s occurs in a gene (a functional region of DNA) called ApoE, and the Parkinson’s pathology involves the clustering of a protein called alpha synuclein.

Specifically, both researchers reported that a genetic variation called ApoE4 is associated with higher levels of alpha synuclein clustering. And ApoE4 is also associated with worse cognitive issues in people carrying it.

In today’s post, we will discuss what ApoE is, what is known about ApoE4, what these new studies found, and what it could mean for the future treatment of Parkinson’s and associated conditions.

 


A mutant. Source: Screenrant

When I say the word ‘mutant’, what do you think of?

Perhaps your imagination drifts towards comic book superheroes or characters in movies who have acquired amazing new super powers resulting from their bodies being zapped with toxic gamma-rays or such like.

Alternatively, maybe you think of certain negative connotation associated with the word ‘mutant’. You might associate the word with terms like ‘weirdo’ or ‘oddity’, and think of the ‘freak show’ performers who used to be put on display at the travelling carnivals.

Circus freak show (photo bombing giraffe). Source: Bretlittlehales

In biology, however, the word ‘mutant’ means something utterly different.

What does ‘mutant’ mean in biology?

Continue reading “That time APOE met Alpha Syn”

Prothena: Phase I results published

This week, biotech firm Prothena published the results of their Phase I safety and tolerance clinical trial of their immunotherapy treatment called PRX002 (also known as RG7935).

Immunotherapy is a method of artificially boosting the body’s immune system to better fight a particular disease. 

PRX002 is a treatment that targets a toxic form of a protein called alpha synuclein – which is believed by many to be one of the main villains in Parkinson’s. 

In today’s post, we will discuss what immunotherapy is, review the results of the clinical trial, and consider what immunotherapy could mean for the Parkinson’s community.


Source: uib

I have previously mentioned on this website that any ‘cure for Parkinson’s’ is going to require three components:

  1. A disease halting mechanism
  2. A neuroprotective agent
  3. Some form of cell replacement therapy

This week we got some interesting clinical news regarding the one of these components: A disease halting mechanism.

The Phase I results of a clinical trial being conducted by a company called Prothena suggest that a new immunotherapy approach in people with Parkinson’s is both safe and well tolerated over long periods of time.

The good folks at Prothena Therapeutics. Source: Prothena

What is immunotherapy?

Continue reading “Prothena: Phase I results published”

A vaccine for Parkinson’s – the AFFiRiS update

This week Austrian biotech firm, AFFiRiS AG, made an announcement regarding their experimental immunotherapy/’vaccine’ approach for Parkinson’s.

In their press release, the company provided the results of a long-term Phase I clinical trial testing the tolerability and safety of their treatment AFFITOPE® PD01A.

The treatment was found to be safe and well-tolerated in people with Parkinson’s. But there was one sentence which was particularly intriguing in the press release regarding clinical symptoms.

In today’s post, we will discuss what is meant by ‘immunotherapy’, outline what this particular clinical trial involved, review the results, and explore what this could mean for the Parkinson’s community.


Source: uib

I have previously mentioned on this website that any ‘cure for Parkinson’s’ is going to require three components:

  1. A disease halting mechanism
  2. A neuroprotective agent
  3. Some form of cell replacement therapy

This week we got some interesting clinical news regarding the one of these components: A disease halting mechanism

Clinical trial results from Austria suggest that a new immunotherapy approach in people with Parkinson’s is both safe and well tolerated over long periods of time.

What is immunotherapy?

Continue reading “A vaccine for Parkinson’s – the AFFiRiS update”

When SERCA goes berserker

In a recent SoPD post, we discussed the importance of calcium and looked at how it interacts with the Parkinson’s-associated protein alpha synuclein, affecting the function and clustering of that protein.

During the writing of that post, another interesting research report was published on the same topic of calcium and alpha synuclein. It involved a different aspect of biology in the cell – a structure called the endoplasmic reticulum – but the findings of that study could also explain some aspects of Parkinson’s.

In today’s post, we will review the new research report, consider the biology behind the findings and how it could relate to Parkinson’s, and discuss how this new information could be used.


The original berserker. Source: Wikipedia

I can remember my father often saying “If you kids don’t be quiet, I’ll go berserk!”

Growing up, I never questioned the meaning of the word ‘berserk‘.

I simply took it as defining the state of mindless madness that my dad could potentially enter if we – his off-spring – pushed him a wee bit too far (and for the record, Dad actually ‘going berserk’ was a very rare event).

My father. But only on the odd occasion. Source: Screenrant

But now as I find myself repeating these same words to my own off-spring, I am left wondering what on Earth it actually means?

What is ‘berserk‘?

Continue reading “When SERCA goes berserker”