Monitoring an Apple in motion

# # # #

Wearable technology offers the potential to more accurately monitor the symptoms of Parkinson’s in real time. Such information could allow for better and more precise management of the condition, as well as providing objective measures for clinical trials exploring novel therapies.

Assessing some of the features of Parkinson’s, however, is not easy. Differentiating jerky involuntary movements like tremor or dyskinesias from planned movements like typing or shaking someone’s hand has proven difficult

Recently, researchers at the tech giant Apple have been applying some focus to this problem and they are now sharing their results with the Parkinson’s community.

In today’s post, we will review a research report presenting the results of the Apple study and discuss other recent events in wearable tech for Parkinson’s.

# # # #


Source: Tes

I used to be an Apple fan back in the day (mid-late 2000s). Wonderful user interface, superb design, lovely innovative products.

But I have to admit: gradually over time I became disenchanted with them.

Why?

The products became too expensive, the “Walled garden” mentality around the operating system frustrated me, and there has been a lack of serious innovation (a new iteration on a phone or tablet every year just doesn’t cut it… and now they are thinking of getting into the crowded space of electric cars… yippee, inspiring stuff).

Maybe we came to expect too much from them, but (personal opinion here) I think they lost their fanatical drive in the absence of Steve.

Source: Dansilvestre

[Positive way to start a post on, huh? It gets better. Stay with me]

All of that said, Apple published a research report earlier this year that deserves the Parkinson’s community’s attention and respect.

What did they report?

Continue reading “Monitoring an Apple in motion”

AAV-PHP.B: The future is apparently now

In addition to looking at current Parkinson’s disease research on this website, I like to look at where technological advances are taking us with regards to future therapies.

In July of this year, I wrote about a new class of engineered viruses that could potentially allow us to treat conditions like Parkinson’s disease using a non-invasive, gene therapy approach (Click here to read that post). At the time I considered this technology way off at some point in the distant future. Blue sky research. “Let’s wait and see” – sort of thing.

So imagine my surprise when an Italian research group last weekend published a new research report in which they used this futurist technology to correct a mouse model of Parkinson’s disease. Suddenly the distant future is feeling not so ‘distant’.

In today’s post we will review and discuss the results, and look at what happens next.


Technological progress – looking inside the brain. Source: Digitial Trends

I have said several times in the past that the pace of Parkinson’s disease research at the moment is overwhelming.

So much is happening so quickly that it is quite simply difficult to keep up. Not just here on the blog, but also with regards to the ever increasing number of research articles in the “need to read” pile on my desk. It’s mad. It’s crazy. Just as I manage to digest something new from one area of research, two or three other publications pop up in different areas.

But it is the shear speed with which things are moving now in the field of Parkinson’s research that is really mind boggling!

Source: Pinterest

Take for example the case of Squalamine.

In February of this year, researchers published an article outlining how a drug derived from the spiny dogfish could completely suppress the toxic effect of the Parkinson’s associated protein Alpha Synuclein (Click here to read that post).

The humble dogfish. Source: Discovery

And then in May (JUST 3 MONTHS LATER!!!), a biotech company called Enterin Inc. announced that they had just enrolled their first patient in the RASMET study: a Phase 1/2a randomised, controlled, multi-center clinical study evaluating a synthetic version of squalamine (called MSI-1436) in people with Parkinson’s disease. The study will enrol 50 patients over a 9-to-12-month period (Click here for the press release).

Source: Onemednews

Wow! That is fast.

Yeah, I thought so too, but then this last weekend a group in Italy published new research that completely changed my ideas on the meaning of the word ‘fast’. Regular readers will recall that in July I discussed amazing new technology that may one day allow us to inject a virus into a person’s arm and then that virus will make it’s way up to the brain and only infect the cells that we want to have a treatment delivered to. This represents non-invasive (as no surgery is required), gene therapy (correcting a medical condition with the delivery of DNA rather than medication). This new study used the same virus we discussed in July.

Continue reading “AAV-PHP.B: The future is apparently now”

Wearable Tech 4 Parkinson’s

wt-cover-crop

We live in an increasingly interconnected technological world.

One can chose to embrace it or ignore it, but I don’t think anyone can do anything to stop it – the masses seem to desire it.

The benefits of all this technology are many, however, for people with Parkinson’s disease. In today’s post we will look at some of the ways wearable technology can be used to improve the lives of people with Parkinson’s disease.


wpid-photo-jan-1-2014-817-pm2

Does anyone still talk to each other? Source: Teachingwithipad

The great Albert Einstein once said that he feared “the day that technology will surpass our human interaction. The world will have a generation of idiots”.

While there are certainly many examples of this situation playing out in our modern society today, the quote misses the mark with regards to the application and benefits of such technology.

For example, people with Parkinson’s disease can now communicate with people in the Parkinson’s community (like ourselves) from anywhere the world. They can reach out and share not only their experiences, but also what treatments and remedies have worked for them.

And then there are the other less obvious applications of an interconnected world:

selfcare-infographic-english

A schematic illustrating the limited monitoring of Parkinson’s. Source: Riggare

On her fantastic blog, engineer and ‘proud mother’ Sara Riggare posted the image above to illustrate the ridiculous current situation regarding the monitoring of Parkinson’s disease. In 2014, she spent 8,765 hours in self care, applying her own knowledge and experience to managing her Parkinson’s disease (8,765 being the number of hours in a year) and had just 1 hour with her physician.

The schematic perfectly illustrates perfectly how little monitoring people with Parkinson’s receive in the standard healthcare system.

People like Sara, however, are taking matters into their own hands. She has become an enthusiastic proponent of ‘self tracking’:

Self tracking represents a fantastic opportunity not only for people with Parkinson’s disease to track their progress, but also for researchers to build up large databases of information relating to the disease from which new theories/hypotheses/treatment approaches could be generated.

And this is possible on a global scale, only because we are a generation of idiots living in a fully interconnected world.

So what opportunities exist for me to self track?

2015-04-21-1429651896-9470404-awatch

Apple Watch. Source: Huffington Post

Recently the technology company Apple announced that it is working on new devices to help track Parkinson’s disease (Click here and here for more on this). The company already offers ResearchKit – a platform available on their iphone.

Apple, however, is actually coming to this party rather late. The Michael J Fox foundation and computer giant Intel formed a partnership back in 2014 to look at wearable technology (Click here to read more about this).

And there are already dozens of applications that can be used on smart phones and tablets. We have previously discussed one such app from a company called uMotif – Click here to read that post.

umotif

umotif. Source: ParkinsonsMovement

In addition, there are other smart phone apps available that readers could try (such as MyTherapyApp) and you can even support new applications as they are being developed (such as Progress Recorder).

 

What if I don’t have time for entering all the details on the smart phone app?

Not a problem.

Why not just wear a recording sensor? The same way you may wear a piece of jewellery. Simple, easy approach and you can just forget that it is even there.

Would you like an interesting example?

This is Utkarsh Tandon.

photo

He’s a 17 years old student at Cupertino High School. He is also the Founder and CEO of OneRing, an intelligent tool for monitoring Parkinson’s

Yes, you read that correctly – he is just 17 years old. Smart kid, we’ll be watching him.

Why is this technology important?

Until recently out understanding of Parkinson’s has relied entirely on what occurs in the lab and clinic based settings. Now information is being collected 24 hours a day. From sleep quality apps to measuring tremor, all of this technology has several very positive features from the view point of research scientists:

  1. Objective monitoring – rather than subjective measures (eg. clinician’s opinion or subject survey) definitive, replicatable data can be generated.
  2. Continuous monitoring – rather than brief periods of monitoring in an artificial research clinic environment, data can be collected in real world settings on a continuous basis
  3. Data accessibility – rather than pencil and paper collection of results, data can be collected electronically and converted to different formats.
  4. Participant engagement – this included benefits such as getting the community involved with the research, getting feedback about the technology throughout the study, and being able to provide subjects with performance reports on a regular basis.

Is wearable tech only for measuring Parkinson’s disease?

No.

Recently it has also started to aid people with the condition. The best example of this is the story that has most recently captured the attention of the Parkinson’s community here in the UK:

Emma Lawton was diagnosed with Parkinson’s disease at just 29 years of age. Working with Haiyan Zhang (Director of Innovation at Microsoft Research) and colleagues, a bracelet was created that counteracted the tremor in Emma’s wrist.

It’s a good story.

Other tech is helping to make life easier for people with Parkinson’s disease – just have a look at what LiftWare is doing.

liftware560

The Liftware stablising spoon. Source: The Verge

In a clinical study, the Liftware spoons reduced shaking of the spoon bowl by an average of 76 per cent (Click here to read more about this).

meet-anupam-pathak-lift-labs-founder

Anupam Pathak – founder of LiftWare. Source: ET

Liftware has now been aquired by Verily Life Sciences – an independent subsidiary of Alphabet Inc (formerly of Google).

So what does it all mean?

The point of this post was to make readers aware of some of the technological resources that are available to them in this modern age. Using these tools, we can quickly collect a vast amount of information regarding all aspects of life for people with Parkinson’s disease. And it also offers folks the opportunity to get involved with research indirectly (if they have a fear of university hospitals!).

There is also another element to all of this recording of information about Parkinson’s disease that is not immediately apparent: we are potentially (and hopefully) the last generations of human being that will be affected by Parkinson’s disease. If current research efforts allow us to block or dramatically slow the condition in the near future, there may not be a disease for our descendants to worry about. While this is a very worthy goal, there is also a responsibility on the current generation to record, document and learn as much as we can about the condition so that those future generations will have information at hand regarding a forgotten medical condition.

Some folks are already doing this in their own creative ways. For example, we recommend all readers subscribe to PD365 –  a fantastic project in which David Sangster and Emma Lawton (her of the bracelet described above) will be making one short video each day about life with Parkinson’s disease. Raising awareness about the condition and providing intimate insight into basic daily life with PD.

Here is Emma’s first video:

And here is David’s first video:

And this idea is really important.

Consider the great fire of London in 1666. It is estimated that the fire destroyed the homes of 70,000 of the City’s 80,000 inhabitants (Source: Wikipedia), and yet our best sources of information regarding the events of that catastrophe are limited to just a few books like the diary of Samuel Pepys.

This may seem like a silly example, but the premise stands. Given all of the technology we have available today, it would be a great failure for our generation not to be able to provide a thorough source of information regarding this disease.

That said, have a think about getting involved.


The banner for today’s post was sourced from Raconteur

A smartphone application for Parkinson’s disease

umotif

Here at the SoPD, we like our gadgets and new technology.

And we believe that there is enormous potential for people with Parkinson’s disease to benefit hugely even from some of the small technological advances that seem to be occurring on a day basis.

Today’s post will review a recent study that looked at tested the benefits of a smartphone application for people with Parkinson’s disease.


selfcare-infographic-english

A schematic illustrating the limited monitoring of Parkinson’s. Source: Riggare

On her great blog, Swedish engineer and ‘proud mother’ Sara Riggare posted the image above to illustrate the ridiculous current situation regarding the standard monitoring of Parkinson’s disease.

As the schematic perfectly illustrates, in 2014 Sara spent 8,765 hours conducting ‘self care’. That is, she was applying her own knowledge and experience to managing her Parkinson’s disease. For just one hour in that year was her Parkinson’s actually being monitored by a medical clinician (8,766 being the number of hours in a year).

This is actually a very serious problem – for not only the Parkinson’s community – but anyone suffering from a long-term medical condition. How are they to gage their current situation on a day to day basis when they have such infrequent visits to their medical specialist?

And this is where technology can help.

But, before we begin:

FULL DISCLOSURE NO.1: the author of this blog is an author in the study that will be discussed (#ThisIsNotShamelessSelfPromotion).

FULL DISCLOSURE NO.2: We here at the SoPD are in no way benefitting from mentioning the study here. The company behind the product, umotif, has not asked us nor been contacted by us regarding this post (in fact, they are completely unaware that we are posting this). We are writing this post simply because we thought that it would be of interest to the wider Parkinson’s community. And yes, as other technology comes to along, we will bring it to you attention by posting about it here.

With all of that out of the way, the study is AMAZING!

smart

Title: Using a smartphone based self-management platform to support medication adherence and clinical consultation in Parkinson’s disease: Results from the SMART-PD Randomised Controlled Trial v4.
Authors: Lakshminarayana R, Wang D, Burn D, Barker RA, Chaudhuri KR, Galtrey C, van Guzman N, Hellman B, Pal S, Stamford J, Steiger M, Stott SRW, Teo J, Barker RA, Wang E, Bloem BR, van der Eijk M, Rochester L, & Williams A
Journal: NPJ Parkinson’s disease (2017), 3, 2.
PMID: N/A          (This article is OPEN ACCESS if you would like to read it)

The company behind the application approached various clinical research groups around the UK and proposed to run a study of their new product. The software had many features (including information about medication, a reminder alarm for when medication should be taken, tests/games, and links to other resources online).

41531_2016_3_fig4_html

A programmable reminder system for medication. Source: Nature

The primary focus of the software, however, was a flower-petal shaped motif that the participants could manipulate to indicate how they were feeling.

umotif-app-screenshot-2

The umotif flower motif. Source: SalusDigital

Participants could drag each coloured petal in or out to indicate how they were feeling at a particular moment in time. The smaller the petal, the more lower the score. And each petal represented different aspects of daily life, for example the moon and stars (dark blue) petal allowed an indication of how one slept.

Each time the participant indicated their current status on the flower motif, the information was recorded and could be tracked over days, weeks, and months. This level of information allowed people to begin to see patterns in their own behaviour over time, with some people getting poorer sleep during the middle of the month for example. And different variables could be compared (such as sleep score with exercise score), providing users with a more dynamic idea of their situation over time.

41531_2016_3_fig5_html-1

Comparing scores between measures over time. Source: Nature

A total of 215 people with Parkinson’s disease were randomly assigned to either receive the application (106 subjects) or not (acting as a control subject; 109 subjects). Both groups were contacted by the investigators fours times during the 16 week trial and feedback was provided in addition to any changes in their treatment regimes.

72% of participants application group continued to use and engage with the application throughout the 16-week trial. By the end of the study, the application group demonstrated significantly improved adherence to their treatment regime when compared to the control group. Curiously, the application also significantly improved patients’ perception of quality of follow up consultations, demonstrating unexpected benefits.

And at the end of the study all of the control group participants in the study were allowed to begin using the application, while the application group continued to use it.

One interesting aspect of the study was the lack of interaction with technology by the target population. 180 people who were initially invited to take part in the study could not because they did not have smartphones (with iPhone/iPad or Android operating systems). So obviously there are opportunities for alternative approaches to this kind of tracking (other than a smartphone).

What does it all mean?

This smartphone application is a user friendly approach to tracking someone’s Parkinson’s over time, getting around the ‘lack of monitoring’ issue that concerns many in the community.

Umotif and Parkinson’s UK have kindly made this video about the study results so we might just sit back and let them explain what it all means and point out all of the benefits.

We are working on additional posts about wearable tech for Parkinson’s disease, which will be coming soon.

So stay tuned.


The banner for today’s post was sourced from ParkinsonsMovement

The road ahead – Parkinson’s research in 2017

road

With the end of the 2016, we thought it would be useful and interesting to provide an overview of where we believe things are going with Parkinson’s disease research in the new year. This post can be a primer for anyone curious about the various research activities, and food for thought for people who may have some fresh ideas and want to get involved with the dialogue.

Never before has so much been happening, and never before has there been greater potential for real change to occur. It is a very exciting time to be involved in this field, and it really does feel like we are on the cusp of some major discoveries.

In today’s post we will outline what to expect from Parkinson’s research in 2017.


bright-future-ahead-1024x772

Things to look forward to. Source: Dreamstime

Before we start: something important to understand –

The goal of most of the research being conducted on Parkinson’s disease is ultimately focused on finding a cure.

But the word ‘cure’, in essence, has two meanings:

  1. The end of a medical condition, and
  2. The substance or procedure that ends the medical condition

These are two very different things.

And in a condition like Parkinson’s disease, where the affected population of people are all at different stages of the disease – spanning from those who are not yet aware of their condition (pre-diagnosis) to those at more advanced stages of the disease – any discussion of a ‘cure for Parkinson’s disease’ must be temporal in its scope.

In addition to this temporal consideration, everyone is different.

A ‘cure’ for one person may not have an impact on another person – particularly when genetics is included in the equation. Currently there is a clinical trial which is only being tested on people with Parkinson’s disease who have a particular genetic mutation (Click here to read more about this).

With all of that said, there are 4 key areas of ongoing/future research:

  • Defining and understanding the biology of the condition
  • Early detection
  • Slowing/halting the disease
  • Replacing what has been lost

EDITOR’S NOTE HERE: While we appreciate that this list does not take into account important research dealing with the improving the day-to-day living and quality of life of those affected by Parkinson’s disease (such as prevention of falling, etc), we are primarily focusing here on finding a ‘cure’.

Let’s now have a look at and discuss each of these key areas of research:

Defining and understanding the biology

maxresdefault

Complicated stuff. Source: Youtube

The first key area of research feeds into all of the others.

It is only through a more thorough understanding of the mechanisms underlying Parkinson’s disease that we will be able to provide early detection, disease halting therapies, and cell replacement options. A better conception of the disease process would open doors in all of the other areas of research.

Given the slow pace of progress thus far, you will understand that this area of research is not easy. And it is made difficult by many issues. For example, it may be that we are blindly dealing with multiple diseases that have different causes and underlying mechanisms, but display the same kinds of symptoms (rigidity, slowness of movement and a resting tremor). Multiple diseases collectively called ‘Parkinson’s’. By not being able to differentiate between the different diseases, we have enormous confounding variables to deal with in the interpretation of any research results. And this idea is not as far fetched as it may sound. One of the most common observations within a group of people with Parkinson’s disease is the variety of disease features the group presents. Some people are more tremor dominate, while others have severe rigidity. Who is to say that these are not manifestations of different diseases that share a common title (if only for ease of management).

This complication raises the possibility that rather than being a disease, ‘Parkinson’s’ may actually be a syndrome (or a group of symptoms which consistently occur together).

Recently there have been efforts to deal with this issue within the Parkinson’s research community. We have previously written about the improved diagnostic criteria for Parkinson’s disease (click here to read that post). In addition, as we mentioned above, some new clinical trials are focusing on people with very specific types of Parkinson’s disease in which the subjects have a particular genetic mutation (Click here to read more about this). Better stratification of the disease/s will help us to better understand it. And with the signing into law of the 21 century Cures Act by President Obama, the Parkinson’s research community will have powerful new data collection tools to use for this purpose – in addition to more funding for research at the National Institute of Health (Click here to red more on this).

More knowledge of the basic biology of Parkinson’s disease is critical to the road forward. Whether the Parkinson’s disease-associated proteins, like alpha synuclein, are actually involved with the cell death associated with the condition is a question that needs to be resolved. If they are simply the bio-product of an alternative (unseen) disease process is important to know.

It is impossible to know what the new year will bring for new discoveries in the basic biology of Parkinson’s disease. Compared to 20 years ago, however, when the new discoveries were few and far between, 2017 will bring with it major new discoveries every month and we’ll do our best to report them here.

Early detection for Parkinson’s disease

test

Consider the impact of a pregnancy test on a person’s life. Source: Wikipedia

Ethically, the ‘early detection’ area of research can be a bit of a mine field, and for good reasons. You see, if we suddenly had a test that could accurately determine who is going to get Parkinson’s disease, we would need to very carefully consider the consequences of using it before people rush to start using it in the clinic.

Firstly there are currently no disease halting treatments, so early knowledge of future potential events may not be useful information. Second, there is the psychological aspect – such information (in light of having no treatment) may have a dramatic impact on a person’s mental wellbeing. And thirdly, such information would have huge implications for one’s general life (for example, individuals are legally bound to tell their banks and insurance companies about such information). So you see, it is a very tricky field to tackle.

Having said all of that, there are some very positive aspects to early detection of Parkinson’s disease. Early indicators (or biomarkers) may tell us something new about the disease, opening novel avenues for research and therapeutic treatments. In addition, early detection would allow for better tracking of the disease course, which would enhance our ideas about how the condition starts and changes over  time.

There are numerous tests being developed – from blood tests (click here and here for posts we wrote about this topic) to saliva tests (again, click here for our post on this topic). There are even a simple urine test (click here for our post on this) and breath analysis test (click here for more on this) being developed. And there are ever increasing brain imaging procedures which may result in early detection methods (Click here for more on this).

How does the Parkinson’s research community study early detection of Parkinson’s disease though? Well, we already know that people with rapid eye movement (REM) sleep disorder problems are more likely to develop Parkinson’s disease. Up to 45 percent of people suffering REM sleep behaviour disorders will go on to develop Parkinson’s disease. So an easy starting point for early detection research is to follow these people over time. In addition, there are genetic mutations which can pre-dispose individuals to early onset Parkinson’s disease, and again these individuals can be followed to determine common ‘biomarkers’ (aspects of life that are shared between affected individuals).  Epidemiological studies (like the Honolulu Heart study – click here for more on this) have opened our eyes to keep features and aspects of Parkinson’s disease that could help with early detection as well.

Slowing/halting Parkinson’s disease

stop

Source: MyThaiLanguage

One of the most significant findings in Parkinson’s disease research over the last few years has been the discovery that transplanted dopamine cells can develop Lewy bodies over time. It is very important for everyone to understand this concept: healthy embryonic cells were placed into the Parkinsonian brain and over the space of one or two decades some of those cells began to display the key pathological feature of Parkinson’s disease: dense, circular clusters of protein called Lewy bodies.

The implications of this finding are profound: Healthy cells (from another organism) developed the features of Parkinson’s disease. And this is (presumably) regardless of the genetic mutations of the host. It suggests that the disease spreads by being passed from cell to cell. There is a very good open-access article about this in the journal Nature (click here to read that article).

Slowing down the progression of Parkinson’s disease is where most of the new clinical trials are focused. There are numerous trials are focused on removing free-floating alpha synuclein (the main protein associated with Parkinson’s disease). This is being done with both vaccines and small molecules (such as antibodies). Beyond possibly slowing the disease, whether these clinical trials are successful or not, they will most definitely provide an important piece of the puzzle that is missing: is alpha synuclein involved with the spread of the disease? If the trials are successful, this would indicate ‘Yes’ and by blocking alpha synuclein we can slow/halt the spread of the disease. If the trials fail, this would suggest that alpha synuclein is not responsible, and indicate that we need to focus our research attention elsewhere.

2017 will be very big year for Parkinson’s disease as some of these clinical trials will be providing our first glimpse at resolving this major question.

Replacing what is lost

fig1-liste

Cell transplantation for Parkinson’s disease. Source: AtlasofScience

So if we discover a means of stopping the disease with a vaccine or a drug, this will be fantastic for people who would be destined to develop the condition… but what about those still living with the disease. Halting the condition will simply leave them where ever they are on the course of the disease – a rather unappealing situation if one is in the latter stages of the condition.

Cell transplantation is one means of replacing some of the cells that have been lost in this disease. Most of the research is focused on the dopamine neurons whose loss is associated with the appearance of the movement features of Parkinson’s disease.

Unfortunately, this area of research is more ‘blue sky’ in terms of its clinical application. It will be some time before cell transplantation has a major impact on Parkinson’s disease. And while many research groups have plans to take this approach to the clinic, there are currently just two ongoing clinical trials for cell transplantation in Parkinson’s disease:

The former is behind schedule due to the technical matters (primarily the source of the tissue being transplanted) and the latter is controversial to say the least (click here and here to read more). In the new year we will be watching to see what happens with a major research consortium called G-Force (strange name we agree). They are planning to take dopamine neurons derived from embryonic stem cells to clinical trials in 2018. Embryonic stem cells represents a major source of cells for transplantation as they can be expanded in a petri dish (millions of cells from just one cell). If they can be pushed in the right direction and they develop into dopamine neurons, they would allow people to start having some of the cells that they have lost to Parkinson’s disease to be replaced.


Above we have discussed the key areas of Parkinson’s disease (dealing with ‘finding a cure’) for 2017. We would love to hear your thoughts on them. If not, here on the SoPD, then somewhere else. Please get involved with the discussion in which ever forum you choose. Speak up and add your personal account of things to the discussion.

It is only through the sharing of ideas, information, and experiences that we are going to figure out this debilitating condition.


And now we are going to change focus and discuss what we are expecting/hoping for in the new year (particularly from the clinical side of things):

Bright future ahead

beach-at-sunset-pics

Looking ahead to better times. Source: Journey with Parkinson’s (Great blog!)

So looking ahead, what is happening:

Recently some major players have come together to focus on Parkinson’s disease:

  1. Bayer and healthcare investment firm Versant Ventures joined forces to invest $225 million in stem-cell therapy company BlueRock Therapeutics. This venture will be focused on induced pluripotent stem cell (iPSC)-derived therapeutics for cardiovascular disease and neurodegenerative disorders, particularly Parkinson’s disease (co-founders Lorenz Studer and Viviane Tabar are world renowned experts in the field of cell transplantation for Parkinson’s disease). Importantly, BlueRock has acquired rights to a key iPSC intellectual property from iPS Academia Japan, and with 4 years of funding they will be looking to make things happen (Click here to read more on this).
  2. Evotec and Celgene are also jumping into the IPS cell field, but they are collaborating to screen for novel drug targets. (Click here to read more on this).
  3. For a long time we have been hearing that the major tech company Apple is working on software and devices for Parkinson’s disease. They already provide ResearchKit and CareKit software/apps. Hopefully in the new year we will hear something about their current projects under development (Click here to read more on this).
  4. In February of 2016, seven of the world’s largest pharmaceutical companies signed up to Critical Path for Parkinson’s set up by Parkinson’s UK. It will be interesting in the new year to see what begins to develop from this initiative.
  5. Parkinson’s UK has also set up the Virtual Biotech, which is looking at providing faster means for new drugs to be brought to market. Hopefully this will take off in 2017.

In addition, there are many clinical trials starting and also announcing results. Here are the top 20 that we are keeping an eye on:

  1. Herantis Pharma, a Finnish pharmaceutical company, will begin recruiting 18 people with Parkinson’s disease for their Conserved Dopamine Neurotrophic Factor (or CDNF) clinical trial. CDNF is very similar to GDNF which we have previously discussed on this site (Click here for that post). Herantis will be collaborating with another company, Renishaw, to deliver the CDNF into the brain (Click here to read more on this trial).
  2. The results of the double-blind, placebo controlled clinical study of the diabetes drug Exenatide will be announced in 2017. We have previously discussed this therapy (click here and here for more on this), and we eagerly await the results of this study.
  3. AAV2-hAADC, which is a gene therapy treatment – a virus that works by allowing cells in the body other than neurons to process levodopa. The results of the phase one trial were successful (click here to read about those results) and the company (Voyager Therapeutics) behind the product are now preparing for phase 2 trials (Click here for more on this).
  4. Donepezil (Aricept®) is an Alzheimer’s therapy that is being tested on dementia and mild cognitive impairment in Parkinson’s disease (Click here for more on this trial).
  5. Oxford Biomedica is attempting to proceed with their product, OXB-102, which is a gene therapy treatment – a virus that modifies neurons so that they produce dopamine. Phase 1 successful, but did not show great efficacy. Phase 2 is underway but not recruiting (click here for more on this trial).
  6. Biotie is proceeding with their product, SYN120, which is new class of combination drug (dual antagonist of the serotonergic 5-HT6 and 5-HT2A receptors) which is being tested as a treatment of cognition and psychosis in Parkinson’s disease (Click here for more on this).
  7. Acorda Therapeutics is continuing to take the new inhalable form of L-dopa, called CVT-301 to the clinic. Phase 1 trials were successful (Click here and here to read more) and phase 2 trials are being planned.
  8. Related to caffeine, Istradefylline, is an A2A receptor antagonist, already approved in Japan, that is designed to reduce “off” time and suppress dyskinesias. Phase 1 testing was successful (Click here for more on this) and phase 2 trials are being planned.
  9. Another product from Biotie, Tozadenant, is an A2A receptor antagonist designed to reduce “off” time and suppress dyskinesias.
  10. UniQure was developing AAV2-GDNF – A gene therapy treatment – a virus designed to deliver GDNF (a naturally occurring protein that may protect dopamine neurons) in the brain (Click here for more on this trial). The company has recently announced cost cutting, however, and removed AAV2-GDNF from it’s list of products under development, so we are unsure about the status of this product.
  11. AstraZeneca are taking their myeloperoxidase (MPO) inhibitor, AZD3241, through phase 2 trials at the moment (Click here for more on this trial). Oxidative stress/damage and the formation of excessive levels of reactive oxygen species plays a key role in the neurodegeneration associated with Parkinson’s disease. MPO is a key enzyme involved in the production of reactive oxygen species. By blocking it, AstraZeneca hopes to slow/halt the progression of Parkinson’s disease.
  12. Genervon Biopharmaceuticals will be hopefully be announcing more results from their phase 2 clinical trial of GM 608 (Click here for more on the trial). GM 608 has been shown to protect neurons against inflammatory factors floating around in the brain. Initial results looked very interesting, though the study was very small (Click here for more on those results).
  13. Neurimmune (in partnership with Biogen) is proceeding with their product, BIIB054, which is an immunotherapy – an antibody that clears free floating alpha-synuclein in an attempt to halt the spread of the disease (Click here for more on this trial).
  14. Neuropore is continuing to move forward with their product, NPT200-11, which is a drug designed to stabilize alpha-synuclein, preventing it from misfolding and aggregating. Phase 1 trial was successful (Click here and here to read more on this). Phase 2 trials are being planned.
  15. Prothena are very pleased with their product, PRX002 (an immunotherapy – an antibody that clears free floating alpha-synuclein in an attempt to halt the spread of the disease (similar to BIIB054 described above)). Phase 1 trials were successful (Click here for more on this).
  16. Edison Pharma is currently conducting a phase  2 trial of Vatiquinone on Visual and Neurological Function in Patients with Parkinson’s Disease (Click here for more on this trial). Vatiquinone modulates oxidative stress by acting on the mitochondria on cells.
  17. Isradipine (Prescal®) – a calcium channel blocker that is approved for treatment of high blood pressure – is being tested in Parkinson’s disease by the Michael J Fox Foundation (Click here for more on this).
  18. Inosine – which is a nutritional supplement that converts to urate, a natural antioxidant found in the body – is going to be tested in a phase 3 clinical trial (Click here for more on that trial).
  19. In 2015, Vernalis has licensed its adenosine receptor antagonist programme (including lead compound V81444) to an unnamed biotech company. We are hoping to see the results of the phase 1 trial that was conducted on V81444 for Parkinson’s disease sometime in the new year (Click here to read more about that trial).
  20. And finally, we are hoping to see progress with Nilotinib (Tasigna®) – A cancer drug that has demonstrated great success in a small phase 1 trial of Parkinson’s disease. Unfortunately there have been delays to the phase 2 trial due to disagreements as to how it should be run (Click here to read more). We have been following this story (Click here and here and here to read more), and are very disappointed with the slow progress of what could potentially be a ‘game-changer’ for the Parkinson’s community. Hopefully the new year will bring some progress.

Please note that this is not an exhaustive list – we have missed many other compounds being tested for Parkinson’s disease. For example there are always alternative versions of products currently on the market being tested in the clinic (eg. new L-dopa products). We have simply listed some of the novel approaches here that we are particularly interested in.

See the Michael J Fox Foundation Pipeline page for more information regarding clinical trials for Parkinson’s disease.


EDITORIAL NOTE HERE: All of the team at the SoPD wants to wish everyone a very enjoyable festive season where ever you are. And all the very best for the new year!

Happy New Year everyone,

The team at SoPD


The banner for today’s post was sourced from Weknowyourdreams