Tagged: treatment

We need a clinical trial of broccoli. Seriously!

In a recent post, I discussed research looking at foods that can influence the progression of Parkinson’s (see that post here). I am regularly asked about the topic of food and will endeavour to highlight more research along this line in future post.

In accordance with that statement, today we are going to discuss Cruciferous vegetables, and why we need a clinical trial of broccoli.

I’m not kidding.

There is growing research that a key component of broccoli and other cruciferous vegetables – called Glucoraphanin – could have beneficial effects on Parkinson’s disease. In today’s post, we will discuss what Glucoraphanin is, look at the research that has been conducted and consider why a clinical trial of broccoli would be a good thing for Parkinson’s disease.


 

Cruciferous vegetables. Source: Diagnosisdiet

Like most kids, when I was young I hated broccoli.

Man, I hated it. With such a passion!

Usually they were boiled or steamed to the point at which they have little or no nutritional value, and they largely became mush upon contact with my fork.

The stuff of my childhood nightmares. Source: Modernpaleo

As I have matured (my wife might debate that statement), my opinion has changed and I have come to appreciate broccoli. Our relationship has definitely improved.

In fact, I have developed a deep appreciation for all cruciferous vegetables.

And yeah, I know what you are going to ask:

What are cruciferous vegetables?

Cruciferous vegetables are vegetables of the Brassicaceae family (also called Cruciferae). They are a family of flowering plants commonly known as the mustards, the crucifers, or simply the cabbage family. They include cauliflower, cabbage, garden cress, bok choy, broccoli, brussels sprouts and similar green leaf vegetables.

Cruciferous vegetables. Source: Thetherapyshare

So what have Cruciferous vegetables got to do with Parkinson’s?

Well, it’s not the vegetables as such that are important. Rather, it is a particular chemical that this family of plants share – called Glucoraphanin – that is key.

What is Glucoraphanin?

Continue reading

Advertisements

Plan B: Itchy velvet beans – Mucuna pruriens

Mucuna-Pruriens-Mood-and-Hormone-Velvet-Bean

The motor features of Parkinson’s disease can be managed with treatments that replace the chemical dopamine in the brain. 

While there are many medically approved dopamine replacement drugs available for people affected by Parkinson’s disease, there also are more natural sources.

In today’s post we will look at the science and discuss the research supporting one of the most potent natural source for dopamine replacement treatment: Mucuna pruriens


Plan.B-oneway

Source: Yourtimeladies

When asked by colleagues and friends what is my ‘plan B’ (that is, if the career in academia does not play out – which is highly probable I might add – Click here to read more about the disastrous state of biomedical research careers), I answer that I have often considered throwing it all in and setting up a not-for-profit, non-governmental organisation to grow plantations of a tropical legume in strategic places around the world, which would provide the third-world with a cheap source of levodopa – the main treatment in the fight against Parkinson’s disease.

Mucuna_pruriens_08

Plan B: A legume plantation. Source: Tropicalforages

The response to my answer is generally one of silent wonder – that is: me silently wondering if they think I’m crazy, and them silently wondering what on earth I’m talking about.

As romantic as the concept sounds, there is an element of truth to my Plan B idea.

I have read many news stories and journal articles about the lack of treatment options for those people with Parkinson’s disease living in the developing world.

South-Africa-hospital

Hospital facilities in the rural Africa. Source: ParkinsonsLife

Some of the research articles on this topic provide a terribly stark image of the contrast between people suffering from Parkinson’s disease in the developing world versus the modernised world. A fantastic example of this research is the work being done by the dedicated researchers at the Parkinson Institute in Milan (Italy), who have been conducting the “Parkinson’s disease in Africa collaboration project”.

5x1000.banner-5x1000-2017-medicigk-is-331

The researchers at the Parkinson Institute in Milan. Source: Parkinson Institute 

The project is an assessment of the socio-demographic, epidemiological, clinical features and genetic causes of Parkinson’s disease in people attending the neurology out-patients clinic of the Korle Bu Teaching and Comboni hospitals. Their work has resulted in several really interesting research reports, such as this one:

Ghana
Title: The modern pre-levodopa era of Parkinson’s disease: insights into motor complications from sub-Saharan Africa.
Authors: Cilia R, Akpalu A, Sarfo FS, Cham M, Amboni M, Cereda E, Fabbri M, Adjei P, Akassi J, Bonetti A, Pezzoli G.
Journal: Brain. 2014 Oct;137(Pt 10):2731-42.
PMID: 25034897          (This article is OPEN ACCESS if you would like to read it)

In this study, the researchers collected data in Ghana between December 2008 and November 2012, and each subject was followed-up for at least 6 months after the initiation of Levodopa therapy. In total, 91 Ghanaians were diagnosed with Parkinson’s disease (58 males, average age at onset 60 ± 11 years), and they were compared to 2282 Italian people with Parkinson’s disease who were recruited during the same period. In long-term follow up, 32 Ghanaians with Parkinson’s disease were assessed (with an average follow period of 2.6 years).

There are some interesting details in the results of the study, such as:

  • Although Levodopa therapy was generally delayed – due to availability and affordability – in Ghana (average disease duration before Levodopa treatment was 4.2 years in Ghana versus just 2.4 years in Italy), the actual disease duration – as determined by the occurrence of motor fluctuations and the onset of dyskinesias – was similar in the two populations.

Ghana2

Source: PMC

  • The motor fluctuations were similar in the two populations, with a slightly lower risk of dyskinesias in Ghanaians.
  • Levodopa daily doses were higher in Italians, but this difference was no longer significant after adjusting for body weight.
  • Ghanaian Parkinson’s sufferers who developed dyskinesias were younger at onset than those who did not.

Reading these sorts of research reports, I am often left baffled by the modern business world’s approach to medicine. I am also left wondering how an individual’s experience of Parkinson’s disease in some of these developing nations would be improved if a cheap alternative to the dopamine replacement therapies was available.

Are any cheap alternatives available?

Continue reading

Dear FDA, this is bigly wrong…and you know it!

maxresdefault

Dopamine agonist treatments are associated with approximately 90% of hyper-sexuality and compulsive gambling cases that occur in people with Parkinson’s disease.

This issue does not affect everyone being treated with this class of drugs, but it is a problem that keeps popping up, with extremely damaging consequences for the affected people who gamble away their life’s saving or ruin their marriages/family life. 

The U.S. Food and Drug Administration (FDA) is yet to issue proper warning for this well recognised side-effect of dopamine agonists, and yet last week they gave clearance for the clinical testing of a new implantable device that will offer continuous delivery of dopamine agonist medication.

In today’s post, we will discuss what dopamine agonists are, the research regarding the impulsive behaviour associated with them, and why the healthcare regulators should acknowledge that there is a problem.


2000px-dopamine2-svg

Dopamine. Source: Wikimedia

Before we start talking about dopamine agonists, let’s start at the very beginning:

What is dopamine?

By the time a person is sitting in front of a neurologist and being told that they ‘have Parkinson’s disease’, they will have lost half the dopamine producing cells in an area of the brain called the midbrain.

Dopamine is a chemical is the brain that plays a role in many basic functions of the brain, such as motor co-ordination, reward, and memory. It works as a signalling molecule (or a neurotransmitter) – a way for brain cells to communicate with each other. Dopamine is released from brain cells that produce this chemical (not all brain cells do this), and it binds to target cells, initiating biological processes within those cells.

1471340161-dopamine-banner

Dopamine being released by one cell and binding to receptors on another. Source: Truelibido

Dopamine binds to target cells via five different receptors – that is to say, dopamine is released from one cell and can bind to one of five different receptors on the target cell (depending on which receptor is present). The receptor is analogous to a lock and dopamine is the key. When dopamine binds to a particular receptor it will allow something to happen in that cell. And this is how information from a dopamine neuron is passed or transmitted on to another cell.

dopamine-receptors-150803

Dopamine acts like a key. Source: JourneywithParkinsons

Continue reading

On the hunt: Parkure

Lysimachos-zografos-naturejobs-blog

This is Lysimachos.

Pronounced: “Leasing ma horse (without the R)” – his words not mine.

He is one of the founders of an Edinburgh-based biotech company called “Parkure“.

In today’s post, we’ll have a look at what the company is doing and what it could mean for Parkinson’s disease.


parkure7

Source: Parkure

The first thing I asked Dr Lysimachos Zografos when we met was: “Are you crazy?”

Understand that I did not mean the question in a negative or offensive manner. I asked it in the same way people ask if Elon Musk is crazy for starting a company with the goal of ‘colonising Mars’.

In 2014, Lysimachos left a nice job in academic research to start a small biotech firm that would use flies to screen for drugs that could be used to treat Parkinson’s disease. An interesting idea, right? But a rather incredible undertaking when you consider the enormous resources of the competition: big pharmaceutical companies. No matter which way you look at this, it has the makings of a real David versus Goliath story.

But also understand this: when I asked him that question, there was a strong element of jealousy in my voice.

Logo_without_strapline_WP

Incorporated in October 2014, this University of Edinburgh spin-out company has already had an interesting story. Here at the SoPD, we have been following their activities with interest for some time, and decided to write this post to make readers aware of them.

Continue reading

Prothena reports Phase 1b results for Parkinson’s immunotherapy

prothena_cmyk_fullcolor

This week the biotech company Prothena released the results of their phase 1b clinical trial for their treatment, PRX002 (also known as RG7935).

This is one of the first immuno-therapies being tested in Parkinson’s disease, and the results indicate that the treatment was active and well tolerated.

In this post we will review the press release and what it tells us regarding this clinical trial.


axs-studio-al-amyloidosis-mechanism-of-action-moa-animation-01

Antibodies binding to proteins. Source: AXS

When your body is infected by a foreign agent, it begins to produce some things called antibodies. In most cases, these are Y-shaped proteins that binds to the un-wanted invader and act as a beacon for the immune system. It is a very effective system, allowing us to go about our daily business without getting sick on a regular basis. Antibodies allow us to build up immunity, or resistance of an organism to infection or disease.

Scientist have harnessed the power of this natural process, and they have use it to develop methods of helping our bodies fight off disease.

The first approach is called Acquired Immunity (or adaptive immunity), and it is based on the idea that exposure of the immune system to a pathogen (disease/damage causing agent) creates an ‘immunological memory’ within our immune system, and this leads to an enhanced response to subsequent future encounters with that same pathogen.

Scientists have used the idea of acquired immunity to develop what we call vaccines – which are simply small, neutral fragments of specific pathogen that help the immune system to build up immunity (or resistance) before the body is attacked by the disease-causing pathogen itself.

getty_rf_photo_of_senior_man_getting_pneumonia_vaccination

Vaccination. Source: WebMD

The second approach is called Passive Immunity.

Passive immunisation is simply the sharing of antibodies. And that might sound a bit disturbing, but it is actually a naturally occurring process. For example, a mother’s antibodies are transferred to her baby in the womb via the placenta.

And again, scientists have devised ways of producing passive immunisation artificially. And recently researchers have been using this approach to attack many medical conditions (particularly cancer), in an area of medicine called immunotherapy.

Think of it as simply boosting the immune system by supplementing the supply of antibodies. Scientists can produce high levels of antibodies that specifically target a particular pathogen and then transfer those antibodies to affected people via an intravenous injection.

How is this being used for Parkinson’s disease?

Well, we have previously discussed the idea of a vaccine for Parkinson’s disease (click here to read that post), and we have been closely following the progress of an Austrian company, AffiRis, who are leading the vaccination approach (Click here for that post).

affiris_logo

Source: AffiRis

The vaccine approach is targeting the Parkinson’s disease associated protein, Alpha synuclein. It is believed that a bad kind of alpha synuclein is causing the spread of the condition, by being passed from cell to cell. The goal of the vaccine is to capture and remove all of the alpha synuclein being passed between cells and thus (hopefully) halt the progress of – or at least slow down – the disease.

And this week, another company – Prothena – has reported the results of their phase 1 trial for a passive immunity approach to Parkinson’s disease. They have been injecting subjects in the trial with a treatment called PRX002.

(Remember that a phase 1 trial simply tests the safety of a treatment in humans, it is not required to test efficacy of the treatment. Efficacy comes with phases 2 & 3 trials)

What is PRX002?

PRX002 is a monoclonal antibody. The scientists at the biotech company Prothena have artificially produced large amounts of antibodies to alpha synuclein and these have been injected into people with Parkinson’s disease.

cq5dam.web.1200.YTE_Chapter_31

Monoclonal antibodies. Source: Astrazeneca

Prothena provide a short video explaining this concept (click here to view the video).

So what were the results of the Prothena study?

The study was conducted in collaboration the pharmaceutical company Roche. It was a double-blind (so both the researchers and subjects did not know what they were receiving until the conclusion of the study), placebo-controlled study involving 80 people with Parkinson’s disease. The subjects were randomly assigned to one of six groups, which received either PRX002 or a placebo. There were six doses of PRX002 tested in the study (0.3, 1, 3, 10, 30 or 60 mg/kg).

The study was conducted over six-month, during which patients received three once-a-month injections of either PRX002 or placebo. The subjects were then followed for an observational period of three months.

According to the press release, no serious treatment-related adverse events were reported in PRX002 treated patients. Mild treatment-related adverse events (greater than anything experienced within the placebo group) were noted in 4 of the 12 subjects in the highest dosage group of PRX002, including constipation and diarrhoea.

Importantly, the investigators reported that thePRX002 antibodies were crossing the blood brain barrier and entering the brain. This resulted in a rapid reduction of alpha-synuclein levels (in some cases by up to 97 percent after a single dose!).

The follow-on Phase 2 clinical study is expected to begin in 2017.

What is the difference between the vaccine and the passive immunity approaches?

Basically, it comes down to levels of control. With a vaccination, once you have injected the vaccine and the immune system is activated, there isn’t much you can do to control the response of the body. And that immune memory is going to last a long time. The passive immunity response, on the other hand, requires regular injections of antibodies which can be stopped if adverse effects are noted.

Plus – and forgive me if I sound a little bit cynical here – drug companies prefer a regular treatment approach (which they can charge for each visit) compared to a one-shot cure. It’s simply a better business model.

What happens next?

In both cases – the vaccine and the passive immunity approaches – phase 2 trials are being set up by the respective companies and we will wait to see have affective these treatments are at slowing down Parkinson’s disease.

If they are affective, expect big headlines in the media and plans for adults everywhere to start being vaccinated. If they fail,…. well, we will have to re-address our understanding of the role of alpha synuclein in Parkinson’s disease.

Interesting times lie ahead.


The banner for todays post was sourced from Prothena