A rising tide with liraglutide

# # # #

A class of diabetes drugs called GLP-1 receptor agonists have exhibited neuroprotective properties in models of Parkinson’s, and a Phase IIb clinical trial produced encouraging.

This research has led to a number of parties to start investigating new and old GLP-1 receptor agonists for their potential to slow the progression of Parkinson’s.

Recently, the results of a second Phase II clinical trial investigating a GLP-1 agonist were announced. The agonist being tested was liraglutide. 

In today’s post, we will discuss what GLP-1 receptor agonists are, what research has been conducted in PD, and look at the recent clinical trial announcement.

# # # #


static1.squarespace

The name “Golden Goose Award” doesn’t really conjure images of an inspirational kind of accomplishment. It does not suggest the same kind of gravitas that the Nobel prize carries. 

In fact, it sounds rather comical: The golden goose award? Sounds like a children’s book writers award.

 And yet…

The Award was originally established in 2012 with the goal of celebrating researchers whose seemingly odd or obscure federally funded research turned out to have a significant and positive impact on society as a whole.

And despite the name, it is a very serious award – past Nobel prize winners (such as Roger TsienDavid H. Hubeland Torsten N. Wiesel) are among the awardees.

In 2013, it was awarded to Dr John Eng, an endocrinologist from the Bronx VA Hospital.

rudw9esurtnukjwruf7q

Dr John Eng. Source: Health.USnews

What did Dr Eng do to deserve the award?

Continue reading “A rising tide with liraglutide”

The Anavex results

# # # #

This week some encouraging clinical trial results were announced by a biotech firm called Anavex Life Sciences.

The company had been testing their lead experimental therapy – a Sigma-1 receptor agonist called ANAVEX2-73 (also known as blarcamesine) – in 132 people with Parkinson’s disease dementia over a 14 week period.

The results are rather encouraging: significantly positive outcomes in both cognitive and motor symptoms.

In today’s post, we will explain what exactly “Sigma-1 receptor agonist” means, discuss what Parkinson’s disease dementia is, and review what we currently know about the results of the trial.

# # # #


Source: Pumpingmarvellous

A lot of clinical trials for disease modification in Parkinson’s are focused on targeting well known proteins that are believed to be associated with underlying biology of the condition, such as alpha synuclein, LRRK2, and GBA. We discuss these on a regular basis here on the SoPD.

There are, however, a large number of trials investigating less well known targets.

And this week we received news that one of these clinical trials had some positive results.

Source: Thestreet

The study was conducted by the biotech company Anavex Life Sciences and it involved their lead experimental therapy ANAVEX2-73 (also known as blarcamesine).

ANAVEX2-73 is a Sigma-1 receptor agonist.

What does that mean?

Continue reading “The Anavex results”

Can sigma-1 get it done?

# # # #

An Australian charity seeking to find disease modifying therapies for Parkinson’s – The Shake It Up Australia Foundation – has announced a commitment to partially fund a clinical trial with a biotech firm called Anavex Life Sciences.

The trial will focus on a drug called ANAVEX2-73 (also known as ‘blarcamesine’). This experimental treatment is a Sigma-1 receptor agonist

In today’s post, we will discuss what the Sigma-1 receptor does, we will review some of the Parkinson’s research that has been conducted on this protein, and we will discuss what we know about the potential trial.

# # # #


A man on a mission. Source: Goulburnpost

The gentleman in the photo above is named Clyde Campbell.

True blue Aussie, innovative robotics engineer, keen sportsman, and all round nice guy.

Clyde also has Parkinson’s, which was diagnosed in 2009 after he noticed a tremor in his left hand while holding notes at a business meeting. After dealing with the initial shock of this life changing event, he turned his attention to doing something about it.

Clyde simply could not sit still and not do anything about his situation, so he grabbed the bull by the horns and decided to shake things up.In 2011, Clyde (and his brother Greg) founded a charity called the Shake It Up Australia Foundation:

Since its founding, the foundation has supported 38 Parkinson’s research projects across 12 institutes, with over AUS$11.5 million in funding. In addition, the organisation is a key partner in the Australian Parkinson’s Mission (Click here to read a previous SoPD post on this project).

To learn more about Clyde, watch this video where he shares his story:

This week the Shake It Up Australia Foundation made a big announcement.

What did they say?

Continue reading “Can sigma-1 get it done?”

Repurposing: From enlarged prostates to Parkinson’s

 

This week exciting new research from a collaboration between Chinese researchers and scientists at the University of Iowa has pointed towards a clinically-available, generic drug that could be re-purposed for Parkinson’s.

The researchers found a drug called Terazosin – which is used for the treatment of enlarged prostates and high blood pressure – can boost energy production in neurons, and also rescue multiple preclinical models of Parkinson’s (including human cell cultures).

Most intriguing, however, was their discovery that people taking Terazosin (or similar drugs) have a reduced incidence of Parkinson’s, and people with Parkinson’s who take Terazosin seem to have less disease progression.

In today’s post, we will look at what Terazosin is, how it functions, what this new research suggests, and how the finding is being taken forward.

 


Reader questions. Source: Yoursalesplaybook

So I have had a few inquiries over the last 24 hours.

Lots of questions.

A wee bit of interest in some recent Parkinson’s associated research.

It seems that there was a bit of excitement generated by press releases regarding new research from a group of researchers in China and the University of Iowa suggesting that a commonly used blood pressure and prostate treatment called Terazosin not only had beneficial effects in multiple models of Parkinson’s, but also reduced the incidence of Parkinson’s in people taking the drug.

Terazosin. Source: Wikipedia

Here is the study in question:

Title: Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases.
Authors: Cai R, Zhang Y, Simmering JE, Schultz JL, Li Y, Fernandez-Carasa I, Consiglio A, Raya A, Polgreen PM, Narayanan NS, Yuan Y, Chen Z, Su W, Han Y, Zhao C, Gao L, Ji X, Welsh MJ, Liu L.
Journal: J Clin Invest. 2019 Sep 16. pii: 129987.
PMID: 31524631                (This report is OPEN ACCESS if you would like to read it)

In this study, the researchers investigated the properties of a drug called terazosin in various models of Parkinson’s.

What is terazosin?

Continue reading “Repurposing: From enlarged prostates to Parkinson’s”

Exciting Exenatide Exosomes

 

Recent analysis of blood samples collected during the Phase II clinical trial of Exenatide in Parkinson’s has uncovered a very interesting finding that could have major implications for not only Parkinson’s, but for many different neurological conditions.

Exenatide is a treatment that helps to control glucose levels in people with diabetes. More recently, however, it has been suggested that this drug may also have beneficial effects in Parkinson’s. A collection of clinical trials in Parkinson’s are currently unway to test this idea.

The researchers who conducted a Phase II clinical trial of Exenatide in Parkinson’s have analysed ‘exosomes‘ collected from the blood of participants, and they found something rather remarkable.

In today’s post we will discuss what exosomes are, what the researchers found, and why their discovery could have major implications for all of neurological research.

 


 

Here on the SoPD website we have discussed at length the Phase II clinical trial of Exenatide in Parkinson’s (Click here, here and here to read more about this).

This week, however, researchers involved in the study reported yet another really interesting finding from the trial. And this one could have profound consequences for how we study not only Parkinson’s, but many other neurological conditions.

What did they find?

Last week this report was published:

Title: Utility of Neuronal-Derived Exosomes to Examine Molecular Mechanisms That Affect Motor Function in Patients With Parkinson Disease: A Secondary Analysis of the Exenatide-PD Trial.
Authors: Athauda D, Gulyani S, Karnati H, Li Y, Tweedie D, Mustapic M, Chawla S, Chowdhury K, Skene SS, Greig NH, Kapogiannis D, Foltynie T.
Journal: JAMA Neurol. 2019 Jan 14. doi: 10.1001/jamaneurol.2018.4304. [Epub ahead of print]
PMID: 30640362

In the Exenatide Phase II clinical trial, 60 people with moderate Parkinson’s were randomly assigned to receive either 2mg of Exenatide or placebo once weekly for 48 weeks followed by a 12-week washout (no treatment) period. The results suggested a stablisation of motor features over the 48 weeks of the study in the treated group (while the condition in the placebo group continued to progress).

During the study (which was conducted between June 2014 – June 2016), blood samples were collected at each assessement.

From those blood samples, serum was collected and analysed.

Remind me again, what is serum?

Continue reading “Exciting Exenatide Exosomes”

What do you do with a problem like Exenatide?

At 23:30 on the 3rd August 2017, the results of a phase II clinical trial investigating the use of a Glucagon-like peptide-1 receptor (GLP-1R) agonist called Exenatide (Bydureon) in Parkinson’s were published the Lancet journal website.

The findings of the study were very interesting.

And after years of failed trials, the Parkinson’s community finally had a drug that appeared to be ‘doing something’. Naturally these results got many in the Parkinson’s community very excited.

Over the last couple of weeks, further research related to this topic has been published. In today’s post we will review some of this new research and ask some important questions regarding how to move forward with these results.


static1.squarespace

In 2012, the Golden Goose Award was awarded to Dr John Eng, an endocrinologist from the Bronx VA Hospital.

rudw9esurtnukjwruf7q

Dr John Eng. Source: Health.USnews

The Award was created in 2012 to celebrate researchers whose seemingly odd or obscure federally funded research turned out to have a significant and positive impact on society.

And despite the name, it is a very serious award – past Nobel prize winners (such as Roger TsienDavid H. Hubel, and Torsten N. Wiesel) are among the awardees.

This week a research report was published in the journal Nature Medicine that expanded on the work of Dr Eng (some 25 years after his big discovery).

And it could be very important to the Parkinson’s community.

Sounds intriguing. What did Dr Eng do?

Continue reading “What do you do with a problem like Exenatide?”

To B3 or not to B3, that is the question

The results of a recent clinical study for Parkinson’s conducted in Georgia (USA) has grabbed the attention of some readers.

The study involved Niacin (also known as nicotinic acid), which is a naturally occurring organic dietary compound and a form of vitamin B3.

The study was very small, but the researchers noticed something interesting in the blood of the participants: Niacin was apparently switching some of the immune cells from an inflammatory state to an anti-inflammatory state.

In today’s post, we will discuss what Niacin is, how it relates to Parkinson’s, and we will consider some of the issues with having too much niacin in your diet.


Source: Universal

It is one of the most common requests I get:

“Can you give an opinion on this supplement ____ or that vitamin ____ as a treatment for Parkinson’s?”

And I don’t like giving opinions, because (my standard disclosure) “I am not a clinician, just a research scientist. And even if i was a clinician, it would be unethical for me to comment as I am not familiar with each individual’s medical history. The best person to speak to is your personal doctor“.

But I also don’t like giving opinions because of a terrible fear that if I write anything remotely positive about anything remotely supplemental or vitamintal (is that a word?), a small portion of readers will rush off and gorge themselves on anything that sounds remotely similar to that supplement or vitamin.

So you will hopefully understand why I am hesitant to write this post.

But having said that, the recently published results of a small clinical study conducted in Augusta (Georgia, USA) are rather interesting.

Continue reading “To B3 or not to B3, that is the question”

Reduce your RAGE as you AGE

An Advanced Glycation Endproduct (or AGE) is a protein or lipid that has become glycated.

Glycation is a haphazard process that impairs the normal functioning of molecules. It occurs as a result of exposure to high amounts of sugar. These AGEs are present at above average levels in people with diabetes and various ageing-related disorders, including neurodegenerative conditionsAGEs have been shown to trigger signalling pathways within cells that are associated with both oxidative stress and inflammation, but also cell death.

RAGE (or receptor of AGEs) is a molecule in a cell membrane that becomes activated when it interacts with various AGEs. And this interaction mediates AGE-associated toxicity issues. Recently researchers found that that neurons carrying the Parkinson’s associated LRRK2 G2019S genetic variant are more sensitive to AGEs than neurons without the genetic variant. 

In today’s post we will look at what AGE and RAGE are, review the new LRRK2 research, and discuss how blocking RAGE could represent a future therapeutic approach for treating Parkinson’s.


The wonder of ageing. Source: Club-cleo

NOTE: Be warned, the reading of this post may get a bit confusing. We are going to be discussing ageing (as in the body getting old) as well as AGEing (the haphazard process processing of glycation). For better clarification, lower caps ‘age’ will refer to getting old, while capitalised ‘AGE’ will deal with that glycation process. I hope this helps.


Ageing means different things to different people.

For some people ageing means more years to add to your life and less activity. For others it means more medication and less hair. More wrinkles and less independence; more arthritis and less dignity; More candles, and less respect from that unruly younger generation; More… what’s that word I’m thinking of? (forgetfulness)… and what were we actually talking about?

Wisdom is supposed to come with age, but as the comedian/entertainer George Carlin once said “Age is a hell of a price to pay for wisdom”. I have to say though, that if I had ever met Mr Carlin, I would have suggested to him that I’m feeling rather ripped off!

George Carlin. Source: Thethornycroftdiatribe

Whether we like it or not, from the moment you are born, ageing is an inevitable part of our life. But this has not stopped some adventurous scientific souls from trying to understand the process, and even try to alter it in an attempt to help humans live longer.

Regardless of whether you agree with the idea of humans living longer than their specified use-by-date, some of this ageing-related research could have tremendous benefits for neurodegenerative conditions, like Parkinson’s.

What do we know about the biology of ageing?

Continue reading “Reduce your RAGE as you AGE”

2017 – Year in Review: A good vintage

At the end of each year, it is a useful practise to review the triumphs (and failures) of the past 12 months. It is an exercise of putting everything into perspective. 

2017 has been an incredible year for Parkinson’s research.

And while I appreciate that statements like that will not bring much comfort to those living with the condition, it is still important to consider and appreciate what has been achieved over the last 12 months.

In this post, we will try to provide a summary of the Parkinson’s-related research that has taken place in 2017 (Be warned: this is a VERY long post!)


The number of research reports and clinical trial studies per year since 1817

As everyone in the Parkinson’s community is aware, in 2017 we were observing the 200th anniversary of the first description of the condition by James Parkinson (1817). But what a lot of people fail to appreciate is how little research was actually done on the condition during the first 180 years of that period.

The graphs above highlight the number of Parkinson’s-related research reports published (top graph) and the number of clinical study reports published (bottom graph) during each of the last 200 years (according to the online research search engine Pubmed – as determined by searching for the term “Parkinson’s“).

PLEASE NOTE, however, that of the approximately 97,000 “Parkinson’s“-related research reports published during the last 200 years, just under 74,000 of them have been published in the last 20 years.

That means that 3/4 of all the published research on Parkinson’s has been conducted in just the last 2 decades.

And a huge chunk of that (almost 10% – 7321 publications) has been done in 2017 only.

So what happened in 2017? Continue reading “2017 – Year in Review: A good vintage”

Dear FDA, this is bigly wrong…and you know it!

maxresdefault

Dopamine agonist treatments are associated with approximately 90% of hyper-sexuality and compulsive gambling cases that occur in people with Parkinson’s disease.

This issue does not affect everyone being treated with this class of drugs, but it is a problem that keeps popping up, with extremely damaging consequences for the affected people who gamble away their life’s saving or ruin their marriages/family life. 

The U.S. Food and Drug Administration (FDA) is yet to issue proper warning for this well recognised side-effect of dopamine agonists, and yet last week they gave clearance for the clinical testing of a new implantable device that will offer continuous delivery of dopamine agonist medication.

In today’s post, we will discuss what dopamine agonists are, the research regarding the impulsive behaviour associated with them, and why the healthcare regulators should acknowledge that there is a problem.


2000px-dopamine2-svg

Dopamine. Source: Wikimedia

Before we start talking about dopamine agonists, let’s start at the very beginning:

What is dopamine?

By the time a person is sitting in front of a neurologist and being told that they ‘have Parkinson’s disease’, they will have lost half the dopamine producing cells in an area of the brain called the midbrain.

Dopamine is a chemical is the brain that plays a role in many basic functions of the brain, such as motor co-ordination, reward, and memory. It works as a signalling molecule (or a neurotransmitter) – a way for brain cells to communicate with each other. Dopamine is released from brain cells that produce this chemical (not all brain cells do this), and it binds to target cells, initiating biological processes within those cells.

1471340161-dopamine-banner

Dopamine being released by one cell and binding to receptors on another. Source: Truelibido

Dopamine binds to target cells via five different receptors – that is to say, dopamine is released from one cell and can bind to one of five different receptors on the target cell (depending on which receptor is present). The receptor is analogous to a lock and dopamine is the key. When dopamine binds to a particular receptor it will allow something to happen in that cell. And this is how information from a dopamine neuron is passed or transmitted on to another cell.

dopamine-receptors-150803

Dopamine acts like a key. Source: JourneywithParkinsons

Continue reading “Dear FDA, this is bigly wrong…and you know it!”