The Agony and the Ecstasy

ecstasy

The contents of today’s post may not be appropriate for all readers. An illegal and potentially damaging drug is discussed. Please proceed with caution. 

3,4-Methylenedioxymethamphetamine (or MDMA) is more commonly known as Ecstasy, ‘Molly’ or simply ‘E’. It is a controlled Class A, synthetic, psychoactive drug that was very popular with the New York and London club scene of the 1980-90s.

It is chemically similar to both stimulants and hallucinogens, producing a feeling of increased energy, pleasure, emotional warmth, but also distorted sensory perception. 

Another curious effect of the drug: it has the ability to reduce dyskinesias – the involuntary movements associated with long-term Levodopa treatment.

In today’s post, we will (try not to get ourselves into trouble by) discussing the biology of MDMA, the research that has been done on it with regards to Parkinson’s disease, and what that may tell us about dyskinesias.


Carwash-image-07

Good times. Source: Carwash

You may have heard this story before.

It is about a stuntman.

His name is Tim Lawrence, and in 1994 – at 34 years of age – he was diagnosed with Parkinson’s disease.

_1169980_tim_lawrence_ecstasy300

Tim Lawrence. Source: BBC

Following the diagnosis, Tim was placed on the standard treatment for Parkinson’s disease: Levodopa. But after just a few years of taking this treatment, he began to develop dyskinesias.

Dyskinesias are involuntary movements that can develop after regular long-term use of Levodopa. There are currently few clinically approved medications for treating this debilitating side effect of Levodopa treatment. I have previously discussed dyskinesias (Click here and here for more of an explanation about them).

As his dyskinesias progressively got worse, Tim was offered and turned down deep brain stimulation as a treatment option. But by 1997, Tim says that he spent most of his waking hours with “twitching, spasmodic, involuntary, sometimes violent movements of the body’s muscles, over which the brain has absolutely no control“.

And the dyskinesias continued to get worse…

…until one night while he was out at a night club, something amazing happened:

Standing in the club with thumping music claiming the air, I was suddenly aware that I was totally still. I felt and looked completely normal. No big deal for you, perhaps, but, for me, it was a revelation” he said.

His dyskinesias had stopped.

Continue reading “The Agony and the Ecstasy”

Higher socioeconomic status jobs

o-INEQUALITY-GIF-facebook

People with high socioeconomic status jobs are believed to be better off in life.

New research published last week by the Centre for Disease Control, however, suggests that this may not be the case with regards to one’s risk of developing Parkinson’s disease.

In today’s post we will review the research and discuss what it means for our understanding of Parkinson’s disease.


childrenoflo

The impact of socioeconomic status. Source: Medicalxpress

In 2013, a group of researchers at Carnegie Mellon University found a rather astonishing but very interesting association:

Children from lower socioeconomic status have shorter telomeres as adults.

Strange, right?

Yeah, wow, strange… sorry, but what are telomeres?

Do you remember how all of your DNA is wound up tightly into 23 pairs of chromosomes? Well, telomeres are at the very ends of each of those chromosomes. They are literally the cap on each end. The name is derived from the Greek words ‘telos‘ meaning “end”, and ‘merοs‘ meaning “part”.

Telomeres are regions of repetitive nucleotide sequences (think the As, Gs, Ts, & Cs that make up your DNA) at each end of a chromosome. Their purpose seems to involve protecting the end of each chromosome from deteriorating or fusing with neighbouring chromosomes. Researchers also use their length is a marker of ageing because every time a cell divides, the telomeres on each chromosome gradually get shorter.

Continue reading “Higher socioeconomic status jobs”

Helicobacter pylori: Unwanted passengers?

helicobacter-pylori


Whether we like it or not, we house a great deal of microbes.

Many of these tiny creatures aid us in our daily living by conducting important functions. Some of these microbes, however, may not be helping us, getting a free ride, and potentially causing trouble.

In today’s post we will review recent research regarding one particular family of bacteria, Helicobacter pylori, and what they might be doing in relations to Parkinson’s disease.


yong

Source: ScienceFriday

In his magnificent book, I contain multitudes, science writer/journalist Ed Yong writes that we – every single one of us – release approximately 37 million bacteria per hour. By talking, breathing, touching, or simply being present in the world, we are losing and also picking up the little passengers everywhere we go.

Reminds me of that Pascal Mercier book “Night Train to Lisbon” – We leave something of ourselves behind when we leave a place,… I’m not sure if this is what he was referring to though.

Yong also points out that: 80% of the bacteria on your right thumb are different to the bacteria on your left thumb.

It’s a fascinating book (and no, I am not receiving any royalties for saying that).

12-microbes.w710.h473.2x

Microbes. Source: NYmag

We have discussed microbes several times on this blog, particularly in the context of the gut and its connection to Parkinson’s disease (Click here, here and here to read some of those posts). Today we are going to re-visit one particular type of microbe that we have also discussed in a previous postHelicobacter pylori.

helicobacter-pylori-1

Helicobacter pylori. Source: Helico

Continue reading “Helicobacter pylori: Unwanted passengers?”

DBS2.0: Look mum, no electrodes!

DBS


Deep brain stimulation is a surgical procedure that can provide immediate motor-related benefits to people with Parkinson’s disease.

The approach involves placing electrodes deep inside the brain. This procedure requires invasive surgery and there are no guarantees that it will actually work for everybody.

Recently, researchers at MIT have devised a new technique that could one day allow for a new kind of deep brain stimulation – one without the electrodes and surgery.

In today’s post we will review the science behind deep brain stimulation and the research leading to non-invasive deep brain stimulation.


maxresdefault

Source: Youtube

In 2002, deep brain stimulation (or DBS) was granted approval for the treatment of Parkinson’s disease by the US Food and Drug Administration (FDA). The historical starting point for this technology, however, dates quite far back…

Further back than many of you may be thinking actually…

In his text “Compositiones medicamentorum” (46 AD), Scribonius Largo, head physician of the Roman emperor Claudius, first suggested using pulses of electricity to treat afflictions of the mind.

Caludius

Roman emperor Claudius. Source: Travelwithme

He proposed that the application of the electric ray (Torpedo nobiliana) on to the cranium could be a beneficial remedy for headaches (and no, I’m not kidding here – this was high tech at the time!).

800px-Atlantic_torpedo_(_Torpedo_nobiliana_)

Torpedo nobiliana. Source: Wikipedia

These Atlantic fish are known to be very capable of producing an electric discharge (approximately 200 volts). The shock is quite severe and painful – the fish get their name from the Latin “torpere,” meaning to be stiffened or paralysed, referring specifically to the response of those who try to pick these fish up – but the shock is not fatal.

Now, whether Largo was ever actually allowed to apply this treatment to the august ruler is unknown, and beyond the point. What matters here is that physicians have been considering and using this approach for a long time. And more recently, the application of it has become more refined.

What is deep brain stimulation?

The modern version of deep brain stimulation is a surgical procedure in which electrodes are implanted into the brain. It is used to treat a variety of debilitating symptoms, particularly those associated with Parkinson’s disease, such as tremor, rigidity, and walking problems.

Continue reading “DBS2.0: Look mum, no electrodes!”

Improving the SoPD blog 2017 – any thoughts/suggestions?

improve-yourself1

Every six months or so, I put up a post asking for feedback/thoughts/suggestions on the style/content of the site. Or requests for any special topics readers would like to read.

In this post, I also try to provide some insight as to how the website is going and what is happening behind the scenes. 

The whole point of this particular post is to provide an opportunity to you the reader to help improve the site – any and all suggestions are welcomed.


sotu201211

The State of the Blog address. Source: Tngop

So lets begin with where things are at present.

The state of the blog:

The blog has been running since the 9th September, 2015. There are currently 155 individual posts (64 this year) dealing with all manner of Parkinson’s disease research-related content (for the full list, please see the site map page).

I have had some readers ask about how much traffic is visiting the site on a regular basis and in the interest of full transparency blah-blah-blah: the site is currently receiving about 3,000 visitors per week. Curiously, Mondays receive the most views (approximately 21% of visitors), and 8pm is the busiest time of each day for the site (approximately 12% of views – is nothing on TV on Mondays nights?).

Continue reading “Improving the SoPD blog 2017 – any thoughts/suggestions?”

The Llama-nation of Parkinson’s disease

f2a0e62f374278fe14db1ca1249204c4

The clustering of a protein called alpha synuclein is one of the cardinal features of the brain of a person with Parkinson’s disease.

Recently published research has demonstrated that tiny antibodies (called nanobodies) derived from llamas (yes, llamas) are very effective at reducing this clustering of alpha synuclein in cell culture models of Parkinson’s disease. 

In today’s post, we will discuss the science, review the research and consider what it could all mean for Parkinson’s disease.


other-spit-long-farm-llama-animals-alpacas-alpaca-neck-animal-soft-furry-llamas-happy-picture-water-1366x768

Llama. Source: Imagesanimals

Ok, I confess: This post has been partly written purely because I really like llamas. And I’m not ashamed to admit it either.

I mean, look at them! They are fantastic:

llamas-and-haircuts-prince-harry1

Source: Vogue

Very cute. But what does this have to do with Parkinson’s disease?

Indeed. Let’s get down to business.

This post has also been written because llamas have a very interesting biological characteristic that is now being exploited in many areas of medical research, including for Parkinson’s disease.

Continue reading “The Llama-nation of Parkinson’s disease”

Future of gene therapy: hAAVing amazing new tools

image-20151106-16253-1rzjd0s

In this post I review recently published research describing interesting new gene therapy tools.

“Gene therapy” involved using genetics, rather than medication to treat conditions like Parkinson’s disease. By replacing faulty sections of DNA (or genes) or providing supportive genes, doctors hope to better treat certain diseases.

While we have ample knowledge regarding how to correct or insert genes effectively, the problem has always been delivery: getting the new DNA into the right types of cells while avoiding all of the other cells.

Now, researchers at the California Institute of Technology may be on the verge of solving this issue with specially engineered viruses.



gene_therapy_augmentation_yourgenome

Gene therapy. Source: yourgenome

When you get sick, the usual solution is to visit your doctor. They will prescribe a medication for you to take, and then all things going well (fingers crossed/knock on wood) you will start to feel better. It is a rather simple and straight forward process, and it has largely worked well for most of us for quite some time.

As the overall population has started to live longer, however, we have become more and more exposed to chronic conditions which require long-term treatment regimes. The “long-term” aspect of this means that some people are regularly taking medication as part of their daily lives. In many cases, these medications are taken multiple times per day.

An example of this is Levodopa (also known as Sinemet or Madopar) which is the most common treatment for the chronic condition of Parkinson’s disease. When you swallow your Levodopa pill, it is broken down in the gut, absorbed through the wall of the intestines, transported to the brain via our blood system, where it is converted into the chemical dopamine – the chemical that is lost in Parkinson’s disease. This conversion of Levodopa increases the levels of dopamine in your brain, which helps to alleviate the motor issues associated with Parkinson’s disease.

7001127301-6010801

Levodopa. Source: Drugs

This pill form of treating a disease is only a temporary solution though. People with Parkinson’s disease – like other chronic conditions – need to take multiple tablets of Levodopa every day to keep their motor features under control. And long term this approach can result in other complications, such as Levodopa-induced dyskinesias in the case of Parkinson’s.

Yeah, but is there a better approach?

Some researchers believe there is. But we are not quite there yet with the application of that approach. Let me explain:

Continue reading “Future of gene therapy: hAAVing amazing new tools”

Tetrabenazine: A strategy for Levodopa-induced dyskinesia?

Dyk

For many people diagnosed with Parkinson’s disease, one of the scariest prospects of the condition that they face is the possibility of developing dyskinesias.

Dyskinesias are involuntary movements that can develop after long term use of the primary treatment of Parkinson’s disease: Levodopa

In todays post I discuss one experimental strategy for dealing with this debilitating aspect of Parkinson’s disease.


Dysco

Dyskinesia. Source: JAMA Neurology

There is a normal course of events with Parkinson’s disease (and yes, I am grossly generalising here).

First comes the shock of the diagnosis.

This is generally followed by the roller coaster of various emotions (including disbelief, sadness, anger, denial).

Then comes the period during which one will try to familiarise oneself with the condition (reading books, searching online, joining Facebook groups), and this usually leads to awareness of some of the realities of the condition.

One of those realities (especially for people with early onset Parkinson’s disease) are dyskinesias.

What are dyskinesias?

Dyskinesias (from Greek: dys – abnormal; and kinēsis – motion, movement) are simply a category of movement disorders that are characterised by involuntary muscle movements. And they are certainly not specific to Parkinson’s disease.

As I have suggested in the summary at the top, they are associated in Parkinson’s disease with long-term use of Levodopa (also known as Sinemet or Madopar).

7001127301-6010801

Sinemet is Levodopa. Source: Drugs

Continue reading “Tetrabenazine: A strategy for Levodopa-induced dyskinesia?”

A need for better regulation: Stem cell transplantation

Neurons-by-ZEISS-Microscopy

Two months ago a research report was published in the scientific journal ‘Nature’ and it caused a bit of a fuss in the embryonic stem cell world.

Embryonic stem (ES) cells are currently being pushed towards the clinic as a possible source of cells for regenerative medicine. But this new report suggested that quite a few of the embryonic stem cells being tested may be carrying genetic variations that could be bad. Bad as in cancer bad.

In this post, I will review the study and discuss what it means for cell transplantation therapy for Parkinson’s disease.

1-researchersl

Source: Medicalexpress

For folks in the stem cell field, the absolute go-to source for all things stem cell related is Prof Paul Knoepfler‘s blog “The Niche“. From the latest scientific research to exciting new stem cell biotech ventures (and even all of the regulatory changes being proposed in congress), Paul’s blog is a daily must read for anyone serious about stem cell research. He has his finger on the pulse and takes the whole field very, very seriously.

Paul

Prof Paul Knoepfler during his TED talk. Source: ipscell

For a long time now, Paul has been on a personal crusade. Like many others in the field (including yours truly), he has been expressing concern about the unsavoury practices of the growing direct-to-consumer, stem cell clinic industry. You may have seen him mentioned in the media regarding this topic (such as this article).

The real concern is that while much of the field is still experimental, many stem cell clinics are making grossly unsubstantiated claims to draw in customers. From exaggerated levels of successful outcomes (100% satisfaction rate?) all the way through to talking about clinical trials that simply do not exist. The industry is badly (read: barely) regulated which is ultimately putting patients at risk (one example: three patients were left blind after undergoing an unproven stem cell treatment – click here to read more on this).

While the stem cell research field fully understands and appreciates the desperate desire of the communities affected by various degenerative conditions, there has to be regulations and strict control standards that all practitioners must abide by. And first amongst any proposed standards should be that the therapy has been proven to be effective for a particular condition in independently audited double blind, placebo controlled trials. Until such proof is provided, the sellers of such products are simply preying on the desperation of the people seeking these types of procedures.

Continue reading “A need for better regulation: Stem cell transplantation”

Glutathione – Getting the k’NAC’k of Parkinson’s disease

NAC

The image above presents a ‘before treatment’ (left) and ‘after treatment’ (right) brain scan image from a recent research report of a clinical study that looked at the use of Acetylcysteine (also known as N-acetylcysteine or simply NAC) in Parkinson’s disease.

DaTscan brain imaging technique allows us to look at the level of dopamine processing in an individual’s brain. Red areas representing a lot; blue areas – not so much. The image above represents a rather remarkable result and it certainly grabbed our attention here at the SoPD HQ (I have never seen anything like it!).

In today’s post, we will review the science behind this NAC and discuss what is happening with ongoing clinical trials.


shutterstock_brains

Source: The Register

Let me ask you a personal question:

Have you ever overdosed on Paracetamol?

Regardless of your answer to that question, one of the main treatments for Paracetamol overdose is administration of a drug called ‘Acetylcysteine’.

Why are you telling me this?

Because acetylcysteine is currently being assessed as a potential treatment for Parkinson’s disease.

Oh I see. Tell me more. What is acetylcysteine?

Acetylcysteine-2D-skeletalAcetylcysteine. Source: Wikimedia

Acetylcysteine (N-acetylcysteine or NAC – commercially named Mucomyst) is a prodrug – that is a compound that undergoes a transformation when ingested by the body and then begins exhibiting pharmacological effects. Acetylcysteine serves as a prodrug to a protein called L-cysteine, and – just as L-dopa is an intermediate in the production of dopamine – L-cysteine is an intermediate in the production of another protein called glutathione.

Take home message: Acetylcysteine allows for increased production of Glutathione.

What is glutathione?

Glutathione-from-xtal-3D-balls

Glutathione. Source: Wikipedia

Glutathione (pronounced “gloota-thigh-own”) is a tripeptide (a string of three amino acids connected by peptide bonds) containing the amino acids glycine, glutamic acid, and cysteine. It is produced naturally in nearly all cells. In the brain, glutathione is concentrated in the helper cells (called astrocytes) and also in the branches of neurons, but not in the actual cell body of the neuron.

It functions as a potent antioxidant.

Continue reading “Glutathione – Getting the k’NAC’k of Parkinson’s disease”